3.2397 $$\int \frac{1}{(d+e x) (a+b x+c x^2)^{5/2}} \, dx$$

Optimal. Leaf size=310 $-\frac{2 \left (-c x (2 c d-b e) \left (-4 c e (2 b d-5 a e)-3 b^2 e^2+8 c^2 d^2\right )-\left (2 a c e+b^2 (-e)+b c d\right ) \left (-4 c e (b d-3 a e)-3 b^2 e^2+8 c^2 d^2\right )+4 a c e (2 c d-b e)^2\right )}{3 \left (b^2-4 a c\right )^2 \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )^2}-\frac{2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/2} \left (a e^2-b d e+c d^2\right )}+\frac{e^4 \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{\left (a e^2-b d e+c d^2\right )^{5/2}}$

[Out]

(-2*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/(3*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*(a + b*x + c*x^2)^
(3/2)) - (2*(4*a*c*e*(2*c*d - b*e)^2 - (b*c*d - b^2*e + 2*a*c*e)*(8*c^2*d^2 - 3*b^2*e^2 - 4*c*e*(b*d - 3*a*e))
- c*(2*c*d - b*e)*(8*c^2*d^2 - 3*b^2*e^2 - 4*c*e*(2*b*d - 5*a*e))*x))/(3*(b^2 - 4*a*c)^2*(c*d^2 - b*d*e + a*e
^2)^2*Sqrt[a + b*x + c*x^2]) + (e^4*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqr
t[a + b*x + c*x^2])])/(c*d^2 - b*d*e + a*e^2)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27333, antiderivative size = 310, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.227, Rules used = {740, 822, 12, 724, 206} $-\frac{2 \left (-c x (2 c d-b e) \left (-4 c e (2 b d-5 a e)-3 b^2 e^2+8 c^2 d^2\right )-\left (2 a c e+b^2 (-e)+b c d\right ) \left (-4 c e (b d-3 a e)-3 b^2 e^2+8 c^2 d^2\right )+4 a c e (2 c d-b e)^2\right )}{3 \left (b^2-4 a c\right )^2 \sqrt{a+b x+c x^2} \left (a e^2-b d e+c d^2\right )^2}-\frac{2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/2} \left (a e^2-b d e+c d^2\right )}+\frac{e^4 \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{\left (a e^2-b d e+c d^2\right )^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)*(a + b*x + c*x^2)^(5/2)),x]

[Out]

(-2*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/(3*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*(a + b*x + c*x^2)^
(3/2)) - (2*(4*a*c*e*(2*c*d - b*e)^2 - (b*c*d - b^2*e + 2*a*c*e)*(8*c^2*d^2 - 3*b^2*e^2 - 4*c*e*(b*d - 3*a*e))
- c*(2*c*d - b*e)*(8*c^2*d^2 - 3*b^2*e^2 - 4*c*e*(2*b*d - 5*a*e))*x))/(3*(b^2 - 4*a*c)^2*(c*d^2 - b*d*e + a*e
^2)^2*Sqrt[a + b*x + c*x^2]) + (e^4*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqr
t[a + b*x + c*x^2])])/(c*d^2 - b*d*e + a*e^2)^(5/2)

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \int \frac{\frac{1}{2} \left (8 c^2 d^2-3 b^2 e^2-4 c e (b d-3 a e)\right )+2 c e (2 c d-b e) x}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \left (4 a c e (2 c d-b e)^2-\left (b c d-b^2 e+2 a c e\right ) \left (8 c^2 d^2-3 b^2 e^2-4 c e (b d-3 a e)\right )-c (2 c d-b e) \left (8 c^2 d^2-3 b^2 e^2-4 c e (2 b d-5 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt{a+b x+c x^2}}+\frac{4 \int \frac{3 \left (b^2-4 a c\right )^2 e^4}{4 (d+e x) \sqrt{a+b x+c x^2}} \, dx}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \left (4 a c e (2 c d-b e)^2-\left (b c d-b^2 e+2 a c e\right ) \left (8 c^2 d^2-3 b^2 e^2-4 c e (b d-3 a e)\right )-c (2 c d-b e) \left (8 c^2 d^2-3 b^2 e^2-4 c e (2 b d-5 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt{a+b x+c x^2}}+\frac{e^4 \int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx}{\left (c d^2-b d e+a e^2\right )^2}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \left (4 a c e (2 c d-b e)^2-\left (b c d-b^2 e+2 a c e\right ) \left (8 c^2 d^2-3 b^2 e^2-4 c e (b d-3 a e)\right )-c (2 c d-b e) \left (8 c^2 d^2-3 b^2 e^2-4 c e (2 b d-5 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt{a+b x+c x^2}}-\frac{\left (2 e^4\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x}{\sqrt{a+b x+c x^2}}\right )}{\left (c d^2-b d e+a e^2\right )^2}\\ &=-\frac{2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \left (a+b x+c x^2\right )^{3/2}}-\frac{2 \left (4 a c e (2 c d-b e)^2-\left (b c d-b^2 e+2 a c e\right ) \left (8 c^2 d^2-3 b^2 e^2-4 c e (b d-3 a e)\right )-c (2 c d-b e) \left (8 c^2 d^2-3 b^2 e^2-4 c e (2 b d-5 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt{a+b x+c x^2}}+\frac{e^4 \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x+c x^2}}\right )}{\left (c d^2-b d e+a e^2\right )^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.503178, size = 309, normalized size = 1. $\frac{2 \left (8 c^2 \left (3 a^2 e^3+5 a c d e^2 x+2 c^2 d^3 x\right )+2 b^2 c e \left (c d (e x-6 d)-11 a e^2\right )+4 b c^2 \left (5 a e^2 (d-e x)+2 c d^2 (d-3 e x)\right )+b^3 c e^2 (d+3 e x)+3 b^4 e^3\right )}{3 \left (b^2-4 a c\right )^2 \sqrt{a+x (b+c x)} \left (e (a e-b d)+c d^2\right )^2}-\frac{2 \left (2 c (a e+c d x)+b^2 (-e)+b c (d-e x)\right )}{3 \left (b^2-4 a c\right ) (a+x (b+c x))^{3/2} \left (e (a e-b d)+c d^2\right )}-\frac{e^4 \tanh ^{-1}\left (\frac{2 a e-b d+b e x-2 c d x}{2 \sqrt{a+x (b+c x)} \sqrt{e (a e-b d)+c d^2}}\right )}{\left (e (a e-b d)+c d^2\right )^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)*(a + b*x + c*x^2)^(5/2)),x]

[Out]

(-2*(-(b^2*e) + 2*c*(a*e + c*d*x) + b*c*(d - e*x)))/(3*(b^2 - 4*a*c)*(c*d^2 + e*(-(b*d) + a*e))*(a + x*(b + c*
x))^(3/2)) + (2*(3*b^4*e^3 + b^3*c*e^2*(d + 3*e*x) + 8*c^2*(3*a^2*e^3 + 2*c^2*d^3*x + 5*a*c*d*e^2*x) + 4*b*c^2
*(2*c*d^2*(d - 3*e*x) + 5*a*e^2*(d - e*x)) + 2*b^2*c*e*(-11*a*e^2 + c*d*(-6*d + e*x))))/(3*(b^2 - 4*a*c)^2*(c*
d^2 + e*(-(b*d) + a*e))^2*Sqrt[a + x*(b + c*x)]) - (e^4*ArcTanh[(-(b*d) + 2*a*e - 2*c*d*x + b*e*x)/(2*Sqrt[c*d
^2 + e*(-(b*d) + a*e)]*Sqrt[a + x*(b + c*x)])])/(c*d^2 + e*(-(b*d) + a*e))^(5/2)

________________________________________________________________________________________

Maple [B]  time = 0.23, size = 1408, normalized size = 4.5 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x)

[Out]

1/3*e/(a*e^2-b*d*e+c*d^2)/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)-2/3*e/(a*e^2-b*d*e
+c*d^2)/(4*a*c-b^2)/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)*x*c*b+4/3/(a*e^2-b*d*e+c
*d^2)/(4*a*c-b^2)/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)*x*c^2*d-1/3*e/(a*e^2-b*d*e
+c*d^2)/(4*a*c-b^2)/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)*b^2+2/3/(a*e^2-b*d*e+c*d
^2)/(4*a*c-b^2)/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)*b*c*d-16/3*e/(a*e^2-b*d*e+c*
d^2)*c^2/(4*a*c-b^2)^2/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*x*b+32/3/(a*e^2-b*d*e
+c*d^2)*c^3/(4*a*c-b^2)^2/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*x*d-8/3*e/(a*e^2-b
*d*e+c*d^2)*c/(4*a*c-b^2)^2/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*b^2+16/3/(a*e^2-
b*d*e+c*d^2)*c^2/(4*a*c-b^2)^2/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*b*d+e^3/(a*e^
2-b*d*e+c*d^2)^2/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)-2*e^3/(a*e^2-b*d*e+c*d^2)^2
/(4*a*c-b^2)/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*x*b*c+4*e^2/(a*e^2-b*d*e+c*d^2)
^2/(4*a*c-b^2)/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*x*c^2*d-e^3/(a*e^2-b*d*e+c*d^
2)^2/(4*a*c-b^2)/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*b^2+2*e^2/(a*e^2-b*d*e+c*d^
2)^2/(4*a*c-b^2)/((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*b*c*d-e^3/(a*e^2-b*d*e+c*d^
2)^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c*d^2
)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 27.2546, size = 9372, normalized size = 30.23 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x, algorithm="fricas")

[Out]

[1/6*(3*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*e^4*x^4 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*e^4*x^3 + (b^6
- 6*a*b^4*c + 32*a^3*c^3)*e^4*x^2 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*e^4*x + (a^2*b^4 - 8*a^3*b^2*c + 16
*a^4*c^2)*e^4)*sqrt(c*d^2 - b*d*e + a*e^2)*log((8*a*b*d*e - 8*a^2*e^2 - (b^2 + 4*a*c)*d^2 - (8*c^2*d^2 - 8*b*c
*d*e + (b^2 + 4*a*c)*e^2)*x^2 - 4*sqrt(c*d^2 - b*d*e + a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*
e)*x) - 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x)/(e^2*x^2 + 2*d*e*x + d^2)) - 4*((b^3*c^3 - 12*a*b*c
^4)*d^5 - (3*b^4*c^2 - 34*a*b^2*c^3 + 8*a^2*c^4)*d^4*e + (3*b^5*c - 27*a*b^3*c^2 - 20*a^2*b*c^3)*d^3*e^2 - (b^
6 - 66*a^2*b^2*c^2 + 40*a^3*c^3)*d^2*e^3 + (5*a*b^5 - 34*a^2*b^3*c + 16*a^3*b*c^2)*d*e^4 - 4*(a^2*b^4 - 7*a^3*
b^2*c + 8*a^4*c^2)*e^5 - (16*c^6*d^5 - 40*b*c^5*d^4*e + 2*(13*b^2*c^4 + 28*a*c^5)*d^3*e^2 + (b^3*c^3 - 84*a*b*
c^4)*d^2*e^3 - (3*b^4*c^2 - 22*a*b^2*c^3 - 40*a^2*c^4)*d*e^4 + (3*a*b^3*c^2 - 20*a^2*b*c^3)*e^5)*x^3 - 3*(8*b*
c^5*d^5 - 20*b^2*c^4*d^4*e + (13*b^3*c^3 + 28*a*b*c^4)*d^3*e^2 + (b^4*c^2 - 46*a*b^2*c^3 + 8*a^2*c^4)*d^2*e^3
- (2*b^5*c - 15*a*b^3*c^2 - 12*a^2*b*c^3)*d*e^4 + 2*(a*b^4*c - 7*a^2*b^2*c^2 + 4*a^3*c^3)*e^5)*x^2 - 3*(2*(b^2
*c^4 + 4*a*c^5)*d^5 - 5*(b^3*c^3 + 4*a*b*c^4)*d^4*e + (3*b^4*c^2 + 22*a*b^2*c^3 + 24*a^2*c^4)*d^3*e^2 + (b^5*c
- 17*a*b^3*c^2 - 28*a^2*b*c^3)*d^2*e^3 - (b^6 - 6*a*b^4*c - 8*a^2*b^2*c^2 - 16*a^3*c^3)*d*e^4 + (a*b^5 - 6*a^
2*b^3*c)*e^5)*x)*sqrt(c*x^2 + b*x + a))/((a^2*b^4*c^3 - 8*a^3*b^2*c^4 + 16*a^4*c^5)*d^6 - 3*(a^2*b^5*c^2 - 8*a
^3*b^3*c^3 + 16*a^4*b*c^4)*d^5*e + 3*(a^2*b^6*c - 7*a^3*b^4*c^2 + 8*a^4*b^2*c^3 + 16*a^5*c^4)*d^4*e^2 - (a^2*b
^7 - 2*a^3*b^5*c - 32*a^4*b^3*c^2 + 96*a^5*b*c^3)*d^3*e^3 + 3*(a^3*b^6 - 7*a^4*b^4*c + 8*a^5*b^2*c^2 + 16*a^6*
c^3)*d^2*e^4 - 3*(a^4*b^5 - 8*a^5*b^3*c + 16*a^6*b*c^2)*d*e^5 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*e^6 + ((b
^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*d^6 - 3*(b^5*c^4 - 8*a*b^3*c^5 + 16*a^2*b*c^6)*d^5*e + 3*(b^6*c^3 - 7*a*b^4
*c^4 + 8*a^2*b^2*c^5 + 16*a^3*c^6)*d^4*e^2 - (b^7*c^2 - 2*a*b^5*c^3 - 32*a^2*b^3*c^4 + 96*a^3*b*c^5)*d^3*e^3 +
3*(a*b^6*c^2 - 7*a^2*b^4*c^3 + 8*a^3*b^2*c^4 + 16*a^4*c^5)*d^2*e^4 - 3*(a^2*b^5*c^2 - 8*a^3*b^3*c^3 + 16*a^4*
b*c^4)*d*e^5 + (a^3*b^4*c^2 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*e^6)*x^4 + 2*((b^5*c^4 - 8*a*b^3*c^5 + 16*a^2*b*c^6)
*d^6 - 3*(b^6*c^3 - 8*a*b^4*c^4 + 16*a^2*b^2*c^5)*d^5*e + 3*(b^7*c^2 - 7*a*b^5*c^3 + 8*a^2*b^3*c^4 + 16*a^3*b*
c^5)*d^4*e^2 - (b^8*c - 2*a*b^6*c^2 - 32*a^2*b^4*c^3 + 96*a^3*b^2*c^4)*d^3*e^3 + 3*(a*b^7*c - 7*a^2*b^5*c^2 +
8*a^3*b^3*c^3 + 16*a^4*b*c^4)*d^2*e^4 - 3*(a^2*b^6*c - 8*a^3*b^4*c^2 + 16*a^4*b^2*c^3)*d*e^5 + (a^3*b^5*c - 8*
a^4*b^3*c^2 + 16*a^5*b*c^3)*e^6)*x^3 + ((b^6*c^3 - 6*a*b^4*c^4 + 32*a^3*c^6)*d^6 - 3*(b^7*c^2 - 6*a*b^5*c^3 +
32*a^3*b*c^5)*d^5*e + 3*(b^8*c - 5*a*b^6*c^2 - 6*a^2*b^4*c^3 + 32*a^3*b^2*c^4 + 32*a^4*c^5)*d^4*e^2 - (b^9 - 3
6*a^2*b^5*c^2 + 32*a^3*b^3*c^3 + 192*a^4*b*c^4)*d^3*e^3 + 3*(a*b^8 - 5*a^2*b^6*c - 6*a^3*b^4*c^2 + 32*a^4*b^2*
c^3 + 32*a^5*c^4)*d^2*e^4 - 3*(a^2*b^7 - 6*a^3*b^5*c + 32*a^5*b*c^3)*d*e^5 + (a^3*b^6 - 6*a^4*b^4*c + 32*a^6*c
^3)*e^6)*x^2 + 2*((a*b^5*c^3 - 8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d^6 - 3*(a*b^6*c^2 - 8*a^2*b^4*c^3 + 16*a^3*b^2*c
^4)*d^5*e + 3*(a*b^7*c - 7*a^2*b^5*c^2 + 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*d^4*e^2 - (a*b^8 - 2*a^2*b^6*c - 32*a^3
*b^4*c^2 + 96*a^4*b^2*c^3)*d^3*e^3 + 3*(a^2*b^7 - 7*a^3*b^5*c + 8*a^4*b^3*c^2 + 16*a^5*b*c^3)*d^2*e^4 - 3*(a^3
*b^6 - 8*a^4*b^4*c + 16*a^5*b^2*c^2)*d*e^5 + (a^4*b^5 - 8*a^5*b^3*c + 16*a^6*b*c^2)*e^6)*x), 1/3*(3*((b^4*c^2
- 8*a*b^2*c^3 + 16*a^2*c^4)*e^4*x^4 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*e^4*x^3 + (b^6 - 6*a*b^4*c + 32*a
^3*c^3)*e^4*x^2 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*e^4*x + (a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2)*e^4)*sqr
t(-c*d^2 + b*d*e - a*e^2)*arctan(-1/2*sqrt(-c*d^2 + b*d*e - a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d
- b*e)*x)/(a*c*d^2 - a*b*d*e + a^2*e^2 + (c^2*d^2 - b*c*d*e + a*c*e^2)*x^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x)
) - 2*((b^3*c^3 - 12*a*b*c^4)*d^5 - (3*b^4*c^2 - 34*a*b^2*c^3 + 8*a^2*c^4)*d^4*e + (3*b^5*c - 27*a*b^3*c^2 - 2
0*a^2*b*c^3)*d^3*e^2 - (b^6 - 66*a^2*b^2*c^2 + 40*a^3*c^3)*d^2*e^3 + (5*a*b^5 - 34*a^2*b^3*c + 16*a^3*b*c^2)*d
*e^4 - 4*(a^2*b^4 - 7*a^3*b^2*c + 8*a^4*c^2)*e^5 - (16*c^6*d^5 - 40*b*c^5*d^4*e + 2*(13*b^2*c^4 + 28*a*c^5)*d^
3*e^2 + (b^3*c^3 - 84*a*b*c^4)*d^2*e^3 - (3*b^4*c^2 - 22*a*b^2*c^3 - 40*a^2*c^4)*d*e^4 + (3*a*b^3*c^2 - 20*a^2
*b*c^3)*e^5)*x^3 - 3*(8*b*c^5*d^5 - 20*b^2*c^4*d^4*e + (13*b^3*c^3 + 28*a*b*c^4)*d^3*e^2 + (b^4*c^2 - 46*a*b^2
*c^3 + 8*a^2*c^4)*d^2*e^3 - (2*b^5*c - 15*a*b^3*c^2 - 12*a^2*b*c^3)*d*e^4 + 2*(a*b^4*c - 7*a^2*b^2*c^2 + 4*a^3
*c^3)*e^5)*x^2 - 3*(2*(b^2*c^4 + 4*a*c^5)*d^5 - 5*(b^3*c^3 + 4*a*b*c^4)*d^4*e + (3*b^4*c^2 + 22*a*b^2*c^3 + 24
*a^2*c^4)*d^3*e^2 + (b^5*c - 17*a*b^3*c^2 - 28*a^2*b*c^3)*d^2*e^3 - (b^6 - 6*a*b^4*c - 8*a^2*b^2*c^2 - 16*a^3*
c^3)*d*e^4 + (a*b^5 - 6*a^2*b^3*c)*e^5)*x)*sqrt(c*x^2 + b*x + a))/((a^2*b^4*c^3 - 8*a^3*b^2*c^4 + 16*a^4*c^5)*
d^6 - 3*(a^2*b^5*c^2 - 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*d^5*e + 3*(a^2*b^6*c - 7*a^3*b^4*c^2 + 8*a^4*b^2*c^3 + 16
*a^5*c^4)*d^4*e^2 - (a^2*b^7 - 2*a^3*b^5*c - 32*a^4*b^3*c^2 + 96*a^5*b*c^3)*d^3*e^3 + 3*(a^3*b^6 - 7*a^4*b^4*c
+ 8*a^5*b^2*c^2 + 16*a^6*c^3)*d^2*e^4 - 3*(a^4*b^5 - 8*a^5*b^3*c + 16*a^6*b*c^2)*d*e^5 + (a^5*b^4 - 8*a^6*b^2
*c + 16*a^7*c^2)*e^6 + ((b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*d^6 - 3*(b^5*c^4 - 8*a*b^3*c^5 + 16*a^2*b*c^6)*d^
5*e + 3*(b^6*c^3 - 7*a*b^4*c^4 + 8*a^2*b^2*c^5 + 16*a^3*c^6)*d^4*e^2 - (b^7*c^2 - 2*a*b^5*c^3 - 32*a^2*b^3*c^4
+ 96*a^3*b*c^5)*d^3*e^3 + 3*(a*b^6*c^2 - 7*a^2*b^4*c^3 + 8*a^3*b^2*c^4 + 16*a^4*c^5)*d^2*e^4 - 3*(a^2*b^5*c^2
- 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*d*e^5 + (a^3*b^4*c^2 - 8*a^4*b^2*c^3 + 16*a^5*c^4)*e^6)*x^4 + 2*((b^5*c^4 - 8
*a*b^3*c^5 + 16*a^2*b*c^6)*d^6 - 3*(b^6*c^3 - 8*a*b^4*c^4 + 16*a^2*b^2*c^5)*d^5*e + 3*(b^7*c^2 - 7*a*b^5*c^3 +
8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d^4*e^2 - (b^8*c - 2*a*b^6*c^2 - 32*a^2*b^4*c^3 + 96*a^3*b^2*c^4)*d^3*e^3 + 3*(
a*b^7*c - 7*a^2*b^5*c^2 + 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*d^2*e^4 - 3*(a^2*b^6*c - 8*a^3*b^4*c^2 + 16*a^4*b^2*c^
3)*d*e^5 + (a^3*b^5*c - 8*a^4*b^3*c^2 + 16*a^5*b*c^3)*e^6)*x^3 + ((b^6*c^3 - 6*a*b^4*c^4 + 32*a^3*c^6)*d^6 - 3
*(b^7*c^2 - 6*a*b^5*c^3 + 32*a^3*b*c^5)*d^5*e + 3*(b^8*c - 5*a*b^6*c^2 - 6*a^2*b^4*c^3 + 32*a^3*b^2*c^4 + 32*a
^4*c^5)*d^4*e^2 - (b^9 - 36*a^2*b^5*c^2 + 32*a^3*b^3*c^3 + 192*a^4*b*c^4)*d^3*e^3 + 3*(a*b^8 - 5*a^2*b^6*c - 6
*a^3*b^4*c^2 + 32*a^4*b^2*c^3 + 32*a^5*c^4)*d^2*e^4 - 3*(a^2*b^7 - 6*a^3*b^5*c + 32*a^5*b*c^3)*d*e^5 + (a^3*b^
6 - 6*a^4*b^4*c + 32*a^6*c^3)*e^6)*x^2 + 2*((a*b^5*c^3 - 8*a^2*b^3*c^4 + 16*a^3*b*c^5)*d^6 - 3*(a*b^6*c^2 - 8*
a^2*b^4*c^3 + 16*a^3*b^2*c^4)*d^5*e + 3*(a*b^7*c - 7*a^2*b^5*c^2 + 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*d^4*e^2 - (a*
b^8 - 2*a^2*b^6*c - 32*a^3*b^4*c^2 + 96*a^4*b^2*c^3)*d^3*e^3 + 3*(a^2*b^7 - 7*a^3*b^5*c + 8*a^4*b^3*c^2 + 16*a
^5*b*c^3)*d^2*e^4 - 3*(a^3*b^6 - 8*a^4*b^4*c + 16*a^5*b^2*c^2)*d*e^5 + (a^4*b^5 - 8*a^5*b^3*c + 16*a^6*b*c^2)*
e^6)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (d + e x\right ) \left (a + b x + c x^{2}\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x**2+b*x+a)**(5/2),x)

[Out]

Integral(1/((d + e*x)*(a + b*x + c*x**2)**(5/2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.74411, size = 4895, normalized size = 15.79 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x, algorithm="giac")

[Out]

2*arctan(-((sqrt(c)*x - sqrt(c*x^2 + b*x + a))*e + sqrt(c)*d)/sqrt(-c*d^2 + b*d*e - a*e^2))*e^4/((c^2*d^4 - 2*
b*c*d^3*e + b^2*d^2*e^2 + 2*a*c*d^2*e^2 - 2*a*b*d*e^3 + a^2*e^4)*sqrt(-c*d^2 + b*d*e - a*e^2)) + 1/3*((((16*c^
11*d^15 - 120*b*c^10*d^14*e + 386*b^2*c^9*d^13*e^2 + 136*a*c^10*d^13*e^2 - 689*b^3*c^8*d^12*e^3 - 884*a*b*c^9*
d^12*e^3 + 732*b^4*c^7*d^11*e^4 + 2412*a*b^2*c^8*d^11*e^4 + 480*a^2*c^9*d^11*e^4 - 451*b^5*c^6*d^10*e^5 - 3542
*a*b^3*c^7*d^10*e^5 - 2640*a^2*b*c^8*d^10*e^5 + 130*b^6*c^5*d^9*e^6 + 2950*a*b^4*c^6*d^9*e^6 + 5910*a^2*b^2*c^
7*d^9*e^6 + 920*a^3*c^8*d^9*e^6 + 9*b^7*c^4*d^8*e^7 - 1296*a*b^5*c^5*d^8*e^7 - 6795*a^2*b^3*c^6*d^8*e^7 - 4140
*a^3*b*c^7*d^8*e^7 - 16*b^8*c^3*d^7*e^8 + 184*a*b^6*c^4*d^7*e^8 + 4080*a^2*b^4*c^5*d^7*e^8 + 7240*a^3*b^2*c^6*
d^7*e^8 + 1040*a^4*c^7*d^7*e^8 + 3*b^9*c^2*d^6*e^9 + 58*a*b^7*c^3*d^6*e^9 - 1050*a^2*b^5*c^4*d^6*e^9 - 6020*a^
3*b^3*c^5*d^6*e^9 - 3640*a^4*b*c^6*d^6*e^9 - 18*a*b^8*c^2*d^5*e^10 - 30*a^2*b^6*c^3*d^5*e^10 + 2220*a^3*b^4*c^
4*d^5*e^10 + 4590*a^4*b^2*c^5*d^5*e^10 + 696*a^5*c^6*d^5*e^10 + 45*a^2*b^7*c^2*d^4*e^11 - 160*a^3*b^5*c^3*d^4*
e^11 - 2375*a^4*b^3*c^4*d^4*e^11 - 1740*a^5*b*c^5*d^4*e^11 - 60*a^3*b^6*c^2*d^3*e^12 + 340*a^4*b^4*c^3*d^3*e^1
2 + 1356*a^5*b^2*c^4*d^3*e^12 + 256*a^6*c^5*d^3*e^12 + 45*a^4*b^5*c^2*d^2*e^13 - 294*a^5*b^3*c^3*d^2*e^13 - 38
4*a^6*b*c^4*d^2*e^13 - 18*a^5*b^4*c^2*d*e^14 + 122*a^6*b^2*c^3*d*e^14 + 40*a^7*c^4*d*e^14 + 3*a^6*b^3*c^2*e^15
- 20*a^7*b*c^3*e^15)*x/(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4) + 3*(8*b*c^10*d^15 - 60*b^2*c^9*d^14*e + 193*b^3*
c^8*d^13*e^2 + 68*a*b*c^9*d^13*e^2 - 344*b^4*c^7*d^12*e^3 - 446*a*b^2*c^8*d^12*e^3 + 8*a^2*c^9*d^12*e^3 + 363*
b^5*c^6*d^11*e^4 + 1230*a*b^3*c^7*d^11*e^4 + 192*a^2*b*c^8*d^11*e^4 - 218*b^6*c^5*d^10*e^5 - 1828*a*b^4*c^6*d^
10*e^5 - 1224*a^2*b^2*c^7*d^10*e^5 + 48*a^3*c^8*d^10*e^5 + 55*b^7*c^4*d^9*e^6 + 1540*a*b^5*c^5*d^9*e^6 + 2915*
a^2*b^3*c^6*d^9*e^6 + 220*a^3*b*c^7*d^9*e^6 + 12*b^8*c^3*d^8*e^7 - 678*a*b^6*c^4*d^8*e^7 - 3510*a^2*b^4*c^5*d^
8*e^7 - 1650*a^3*b^2*c^6*d^8*e^7 + 120*a^4*c^7*d^8*e^7 - 11*b^9*c^2*d^7*e^8 + 86*a*b^7*c^3*d^7*e^8 + 2202*a^2*
b^5*c^4*d^7*e^8 + 3380*a^3*b^3*c^5*d^7*e^8 + 40*a^4*b*c^6*d^7*e^8 + 2*b^10*c*d^6*e^9 + 40*a*b^8*c^2*d^6*e^9 -
592*a^2*b^6*c^3*d^6*e^9 - 3120*a^3*b^4*c^4*d^6*e^9 - 1180*a^4*b^2*c^5*d^6*e^9 + 160*a^5*c^6*d^6*e^9 - 12*a*b^9
*c*d^5*e^10 - 21*a^2*b^7*c^2*d^5*e^10 + 1272*a^3*b^5*c^3*d^5*e^10 + 2055*a^4*b^3*c^4*d^5*e^10 - 132*a^5*b*c^5*
d^5*e^10 + 30*a^2*b^8*c*d^4*e^11 - 110*a^3*b^6*c^2*d^4*e^11 - 1300*a^4*b^4*c^3*d^4*e^11 - 450*a^5*b^2*c^4*d^4*
e^11 + 120*a^6*c^5*d^4*e^11 - 40*a^3*b^7*c*d^3*e^12 + 235*a^4*b^5*c^2*d^3*e^12 + 638*a^5*b^3*c^3*d^3*e^12 - 11
2*a^6*b*c^4*d^3*e^12 + 30*a^4*b^6*c*d^2*e^13 - 204*a^5*b^4*c^2*d^2*e^13 - 96*a^6*b^2*c^3*d^2*e^13 + 48*a^7*c^4
*d^2*e^13 - 12*a^5*b^5*c*d*e^14 + 85*a^6*b^3*c^2*d*e^14 - 28*a^7*b*c^3*d*e^14 + 2*a^6*b^4*c*e^15 - 14*a^7*b^2*
c^2*e^15 + 8*a^8*c^3*e^15)/(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4))*x + 3*(2*b^2*c^9*d^15 + 8*a*c^10*d^15 - 15*b^
3*c^8*d^14*e - 60*a*b*c^9*d^14*e + 48*b^4*c^7*d^13*e^2 + 212*a*b^2*c^8*d^13*e^2 + 64*a^2*c^9*d^13*e^2 - 84*b^5
*c^6*d^12*e^3 - 472*a*b^3*c^7*d^12*e^3 - 408*a^2*b*c^8*d^12*e^3 + 84*b^6*c^5*d^11*e^4 + 726*a*b^4*c^6*d^11*e^4
+ 1158*a^2*b^2*c^7*d^11*e^4 + 216*a^3*c^8*d^11*e^4 - 42*b^7*c^4*d^10*e^5 - 772*a*b^5*c^5*d^10*e^5 - 1961*a^2*
b^3*c^6*d^10*e^5 - 1140*a^3*b*c^7*d^10*e^5 + 530*a*b^6*c^4*d^9*e^6 + 2220*a^2*b^4*c^5*d^9*e^6 + 2560*a^3*b^2*c
^6*d^9*e^6 + 400*a^4*c^7*d^9*e^6 + 12*b^9*c^2*d^8*e^7 - 192*a*b^7*c^3*d^8*e^7 - 1719*a^2*b^5*c^4*d^8*e^7 - 327
0*a^3*b^3*c^5*d^8*e^7 - 1680*a^4*b*c^6*d^8*e^7 - 6*b^10*c*d^7*e^8 + 2*a*b^8*c^2*d^7*e^8 + 838*a^2*b^6*c^3*d^7*
e^8 + 2700*a^3*b^4*c^4*d^7*e^8 + 2830*a^4*b^2*c^5*d^7*e^8 + 440*a^5*c^6*d^7*e^8 + b^11*d^6*e^9 + 24*a*b^9*c*d^
6*e^9 - 183*a^2*b^7*c^2*d^6*e^9 - 1496*a^3*b^5*c^3*d^6*e^9 - 2545*a^4*b^3*c^4*d^6*e^9 - 1380*a^5*b*c^5*d^6*e^9
- 6*a*b^10*d^5*e^10 - 24*a^2*b^8*c*d^5*e^10 + 480*a^3*b^6*c^2*d^5*e^10 + 1440*a^4*b^4*c^3*d^5*e^10 + 1572*a^5
*b^2*c^4*d^5*e^10 + 288*a^6*c^5*d^5*e^10 + 15*a^2*b^9*d^4*e^11 - 30*a^3*b^7*c*d^4*e^11 - 550*a^4*b^5*c^2*d^4*e
^11 - 860*a^5*b^3*c^3*d^4*e^11 - 600*a^6*b*c^4*d^4*e^11 - 20*a^3*b^8*d^3*e^12 + 90*a^4*b^6*c*d^3*e^12 + 318*a^
5*b^4*c^2*d^3*e^12 + 362*a^6*b^2*c^3*d^3*e^12 + 104*a^7*c^4*d^3*e^12 + 15*a^4*b^7*d^2*e^13 - 84*a^5*b^5*c*d^2*
e^13 - 87*a^6*b^3*c^2*d^2*e^13 - 108*a^7*b*c^3*d^2*e^13 - 6*a^5*b^6*d*e^14 + 36*a^6*b^4*c*d*e^14 + 8*a^7*b^2*c
^2*d*e^14 + 16*a^8*c^3*d*e^14 + a^6*b^5*e^15 - 6*a^7*b^3*c*e^15)/(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4))*x - (b^
3*c^8*d^15 - 12*a*b*c^9*d^15 - 8*b^4*c^7*d^14*e + 94*a*b^2*c^8*d^14*e - 8*a^2*c^9*d^14*e + 28*b^5*c^6*d^13*e^2
- 312*a*b^3*c^7*d^13*e^2 - 40*a^2*b*c^8*d^13*e^2 - 56*b^6*c^5*d^12*e^3 + 560*a*b^4*c^6*d^12*e^3 + 496*a^2*b^2
*c^7*d^12*e^3 - 80*a^3*c^8*d^12*e^3 + 70*b^7*c^4*d^11*e^4 - 560*a*b^5*c^5*d^11*e^4 - 1649*a^2*b^3*c^6*d^11*e^4
+ 156*a^3*b*c^7*d^11*e^4 - 56*b^8*c^3*d^10*e^5 + 252*a*b^6*c^4*d^10*e^5 + 2726*a^2*b^4*c^5*d^10*e^5 + 738*a^3
*b^2*c^6*d^10*e^5 - 312*a^4*c^7*d^10*e^5 + 28*b^9*c^2*d^9*e^6 + 56*a*b^7*c^3*d^9*e^6 - 2447*a^2*b^5*c^4*d^9*e^
6 - 3150*a^3*b^3*c^5*d^9*e^6 + 960*a^4*b*c^6*d^9*e^6 - 8*b^10*c*d^8*e^7 - 128*a*b^8*c^2*d^8*e^7 + 1060*a^2*b^6
*c^3*d^8*e^7 + 4820*a^3*b^4*c^4*d^8*e^7 - 100*a^4*b^2*c^5*d^8*e^7 - 640*a^5*c^6*d^8*e^7 + b^11*d^7*e^8 + 60*a*
b^9*c*d^7*e^8 - 31*a^2*b^7*c^2*d^7*e^8 - 3520*a^3*b^5*c^3*d^7*e^8 - 2865*a^4*b^3*c^4*d^7*e^8 + 1900*a^5*b*c^5*
d^7*e^8 - 10*a*b^10*d^6*e^9 - 146*a^2*b^8*c*d^6*e^9 + 1034*a^3*b^6*c^2*d^6*e^9 + 4180*a^4*b^4*c^3*d^6*e^9 - 11
50*a^5*b^2*c^4*d^6*e^9 - 760*a^6*c^5*d^6*e^9 + 39*a^2*b^9*d^5*e^10 + 82*a^3*b^7*c*d^5*e^10 - 2198*a^4*b^5*c^2*
d^5*e^10 - 1484*a^5*b^3*c^3*d^5*e^10 + 1848*a^6*b*c^4*d^5*e^10 - 80*a^3*b^8*d^4*e^11 + 240*a^4*b^6*c*d^4*e^11
+ 1952*a^5*b^4*c^2*d^4*e^11 - 936*a^6*b^2*c^3*d^4*e^11 - 528*a^7*c^4*d^4*e^11 + 95*a^4*b^7*d^3*e^12 - 512*a^5*
b^5*c*d^3*e^12 - 607*a^6*b^3*c^2*d^3*e^12 + 900*a^7*b*c^3*d^3*e^12 - 66*a^5*b^6*d^2*e^13 + 430*a^6*b^4*c*d^2*e
^13 - 194*a^7*b^2*c^2*d^2*e^13 - 200*a^8*c^3*d^2*e^13 + 25*a^6*b^5*d*e^14 - 174*a^7*b^3*c*d*e^14 + 176*a^8*b*c
^2*d*e^14 - 4*a^7*b^4*e^15 + 28*a^8*b^2*c*e^15 - 32*a^9*c^2*e^15)/(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4))/(c*x^2
+ b*x + a)^(3/2)