### 3.2330 $$\int \frac{x^{9/2}}{(a+b x+c x^2)^3} \, dx$$

Optimal. Leaf size=389 $\frac{3 \left (-\frac{44 a^2 b c^2-11 a b^3 c+b^5}{\sqrt{b^2-4 a c}}+28 a^2 c^2-9 a b^2 c+b^4\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} c^{5/2} \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \left (\frac{44 a^2 b c^2-11 a b^3 c+b^5}{\sqrt{b^2-4 a c}}+28 a^2 c^2-9 a b^2 c+b^4\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} c^{5/2} \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{3 b \sqrt{x} \left (b^2-8 a c\right )}{4 c^2 \left (b^2-4 a c\right )^2}+\frac{x^{7/2} (2 a+b x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{x^{3/2} \left (b x \left (b^2-16 a c\right )+a \left (b^2-28 a c\right )\right )}{4 c \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}$

[Out]

(-3*b*(b^2 - 8*a*c)*Sqrt[x])/(4*c^2*(b^2 - 4*a*c)^2) + (x^(7/2)*(2*a + b*x))/(2*(b^2 - 4*a*c)*(a + b*x + c*x^2
)^2) + (x^(3/2)*(a*(b^2 - 28*a*c) + b*(b^2 - 16*a*c)*x))/(4*c*(b^2 - 4*a*c)^2*(a + b*x + c*x^2)) + (3*(b^4 - 9
*a*b^2*c + 28*a^2*c^2 - (b^5 - 11*a*b^3*c + 44*a^2*b*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/
Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*c^(5/2)*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*(b^4 - 9*a*
b^2*c + 28*a^2*c^2 + (b^5 - 11*a*b^3*c + 44*a^2*b*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqr
t[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*c^(5/2)*(b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 1.76296, antiderivative size = 389, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 18, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.333, Rules used = {738, 818, 824, 826, 1166, 205} $\frac{3 \left (-\frac{44 a^2 b c^2-11 a b^3 c+b^5}{\sqrt{b^2-4 a c}}+28 a^2 c^2-9 a b^2 c+b^4\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} c^{5/2} \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \left (\frac{44 a^2 b c^2-11 a b^3 c+b^5}{\sqrt{b^2-4 a c}}+28 a^2 c^2-9 a b^2 c+b^4\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} c^{5/2} \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{3 b \sqrt{x} \left (b^2-8 a c\right )}{4 c^2 \left (b^2-4 a c\right )^2}+\frac{x^{7/2} (2 a+b x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{x^{3/2} \left (b x \left (b^2-16 a c\right )+a \left (b^2-28 a c\right )\right )}{4 c \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[x^(9/2)/(a + b*x + c*x^2)^3,x]

[Out]

(-3*b*(b^2 - 8*a*c)*Sqrt[x])/(4*c^2*(b^2 - 4*a*c)^2) + (x^(7/2)*(2*a + b*x))/(2*(b^2 - 4*a*c)*(a + b*x + c*x^2
)^2) + (x^(3/2)*(a*(b^2 - 28*a*c) + b*(b^2 - 16*a*c)*x))/(4*c*(b^2 - 4*a*c)^2*(a + b*x + c*x^2)) + (3*(b^4 - 9
*a*b^2*c + 28*a^2*c^2 - (b^5 - 11*a*b^3*c + 44*a^2*b*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/
Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*c^(5/2)*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*(b^4 - 9*a*
b^2*c + 28*a^2*c^2 + (b^5 - 11*a*b^3*c + 44*a^2*b*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqr
t[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*c^(5/2)*(b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 738

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(
d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] + Dist[1/((p + 1)*(b^2 -
4*a*c)), Int[(d + e*x)^(m - 2)*Simp[e*(2*a*e*(m - 1) + b*d*(2*p - m + 4)) - 2*c*d^2*(2*p + 3) + e*(b*e - 2*d*
c)*(m + 2*p + 2)*x, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] &
& NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, b, c, d,
e, m, p, x]

Rule 818

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*(2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*g
- c*(b*e*f + b*d*g + 2*a*e*g))*x))/(c*(p + 1)*(b^2 - 4*a*c)), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d +
e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2*a
*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m +
2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && Ne
Q[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &&
RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 824

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(g
*(d + e*x)^m)/(c*m), x] + Dist[1/c, Int[((d + e*x)^(m - 1)*Simp[c*d*f - a*e*g + (g*c*d - b*e*g + c*e*f)*x, x])
/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*
e^2, 0] && FractionQ[m] && GtQ[m, 0]

Rule 826

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2,
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{9/2}}{\left (a+b x+c x^2\right )^3} \, dx &=\frac{x^{7/2} (2 a+b x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}-\frac{\int \frac{x^{5/2} \left (7 a+\frac{b x}{2}\right )}{\left (a+b x+c x^2\right )^2} \, dx}{2 \left (b^2-4 a c\right )}\\ &=\frac{x^{7/2} (2 a+b x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{x^{3/2} \left (a \left (b^2-28 a c\right )+b \left (b^2-16 a c\right ) x\right )}{4 c \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}-\frac{\int \frac{\sqrt{x} \left (\frac{3}{4} a \left (b^2-28 a c\right )+\frac{3}{4} b \left (b^2-8 a c\right ) x\right )}{a+b x+c x^2} \, dx}{2 c \left (b^2-4 a c\right )^2}\\ &=-\frac{3 b \left (b^2-8 a c\right ) \sqrt{x}}{4 c^2 \left (b^2-4 a c\right )^2}+\frac{x^{7/2} (2 a+b x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{x^{3/2} \left (a \left (b^2-28 a c\right )+b \left (b^2-16 a c\right ) x\right )}{4 c \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}-\frac{\int \frac{-\frac{3}{4} a b \left (b^2-8 a c\right )-\frac{3}{4} \left (b^4-9 a b^2 c+28 a^2 c^2\right ) x}{\sqrt{x} \left (a+b x+c x^2\right )} \, dx}{2 c^2 \left (b^2-4 a c\right )^2}\\ &=-\frac{3 b \left (b^2-8 a c\right ) \sqrt{x}}{4 c^2 \left (b^2-4 a c\right )^2}+\frac{x^{7/2} (2 a+b x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{x^{3/2} \left (a \left (b^2-28 a c\right )+b \left (b^2-16 a c\right ) x\right )}{4 c \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}-\frac{\operatorname{Subst}\left (\int \frac{-\frac{3}{4} a b \left (b^2-8 a c\right )-\frac{3}{4} \left (b^4-9 a b^2 c+28 a^2 c^2\right ) x^2}{a+b x^2+c x^4} \, dx,x,\sqrt{x}\right )}{c^2 \left (b^2-4 a c\right )^2}\\ &=-\frac{3 b \left (b^2-8 a c\right ) \sqrt{x}}{4 c^2 \left (b^2-4 a c\right )^2}+\frac{x^{7/2} (2 a+b x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{x^{3/2} \left (a \left (b^2-28 a c\right )+b \left (b^2-16 a c\right ) x\right )}{4 c \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}+\frac{\left (3 \left (b^4-9 a b^2 c+28 a^2 c^2-\frac{b^5-11 a b^3 c+44 a^2 b c^2}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,\sqrt{x}\right )}{8 c^2 \left (b^2-4 a c\right )^2}+\frac{\left (3 \left (b^4-9 a b^2 c+28 a^2 c^2+\frac{b^5-11 a b^3 c+44 a^2 b c^2}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,\sqrt{x}\right )}{8 c^2 \left (b^2-4 a c\right )^2}\\ &=-\frac{3 b \left (b^2-8 a c\right ) \sqrt{x}}{4 c^2 \left (b^2-4 a c\right )^2}+\frac{x^{7/2} (2 a+b x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{x^{3/2} \left (a \left (b^2-28 a c\right )+b \left (b^2-16 a c\right ) x\right )}{4 c \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}+\frac{3 \left (b^4-9 a b^2 c+28 a^2 c^2-\frac{b^5-11 a b^3 c+44 a^2 b c^2}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} c^{5/2} \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \left (b^4-9 a b^2 c+28 a^2 c^2+\frac{b^5-11 a b^3 c+44 a^2 b c^2}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} c^{5/2} \left (b^2-4 a c\right )^2 \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 1.59104, size = 518, normalized size = 1.33 $\frac{\frac{x^{11/2} \left (12 a^2 c^2-25 a b^2 c-16 a b c^2 x+7 b^3 c x+7 b^4\right )}{2 a \left (4 a c-b^2\right ) (a+x (b+c x))}+\frac{-\frac{6 a^2 b \sqrt{x} \left (b^2-8 a c\right )}{c^2}+\frac{3 \sqrt{2} a^2 \left (\frac{\left (28 a^2 c^2 \sqrt{b^2-4 a c}-44 a^2 b c^2+b^4 \sqrt{b^2-4 a c}+11 a b^3 c-9 a b^2 c \sqrt{b^2-4 a c}-b^5\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\left (28 a^2 c^2 \sqrt{b^2-4 a c}+44 a^2 b c^2+b^4 \sqrt{b^2-4 a c}-11 a b^3 c-9 a b^2 c \sqrt{b^2-4 a c}+b^5\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{c^{5/2} \sqrt{b^2-4 a c}}+\frac{2 a^2 x^{3/2} \left (b^2-28 a c\right )}{c}+24 a^2 b x^{5/2}+2 b x^{9/2} \left (7 b^2-16 a c\right )+6 a x^{7/2} \left (4 a c-3 b^2\right )}{4 a \left (b^2-4 a c\right )}+\frac{x^{11/2} \left (-2 a c+b^2+b c x\right )}{(a+x (b+c x))^2}}{2 a \left (b^2-4 a c\right )}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[x^(9/2)/(a + b*x + c*x^2)^3,x]

[Out]

((x^(11/2)*(b^2 - 2*a*c + b*c*x))/(a + x*(b + c*x))^2 + (x^(11/2)*(7*b^4 - 25*a*b^2*c + 12*a^2*c^2 + 7*b^3*c*x
- 16*a*b*c^2*x))/(2*a*(-b^2 + 4*a*c)*(a + x*(b + c*x))) + ((-6*a^2*b*(b^2 - 8*a*c)*Sqrt[x])/c^2 + (2*a^2*(b^2
- 28*a*c)*x^(3/2))/c + 24*a^2*b*x^(5/2) + 6*a*(-3*b^2 + 4*a*c)*x^(7/2) + 2*b*(7*b^2 - 16*a*c)*x^(9/2) + (3*Sq
rt[2]*a^2*(((-b^5 + 11*a*b^3*c - 44*a^2*b*c^2 + b^4*Sqrt[b^2 - 4*a*c] - 9*a*b^2*c*Sqrt[b^2 - 4*a*c] + 28*a^2*c
^2*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/Sqrt[b - Sqrt[b^2 - 4*a*c
]] + ((b^5 - 11*a*b^3*c + 44*a^2*b*c^2 + b^4*Sqrt[b^2 - 4*a*c] - 9*a*b^2*c*Sqrt[b^2 - 4*a*c] + 28*a^2*c^2*Sqrt
[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(c
^(5/2)*Sqrt[b^2 - 4*a*c]))/(4*a*(b^2 - 4*a*c)))/(2*a*(b^2 - 4*a*c))

________________________________________________________________________________________

Maple [B]  time = 0.203, size = 1166, normalized size = 3. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^(9/2)/(c*x^2+b*x+a)^3,x)

[Out]

2*(-1/8*(44*a^2*c^2-37*a*b^2*c+5*b^4)/(16*a^2*c^2-8*a*b^2*c+b^4)/c*x^(7/2)+1/8*b*(4*a^2*c^2+20*a*b^2*c-3*b^4)/
c^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(5/2)-1/8*a/c^2*(28*a^2*c^2-49*a*b^2*c+6*b^4)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(3
/2)+3/8*b*a^2*(8*a*c-b^2)/c^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(1/2))/(c*x^2+b*x+a)^2-21/2/(16*a^2*c^2-8*a*b^2*c+b
^4)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a^2
+27/8/c/(16*a^2*c^2-8*a*b^2*c+b^4)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-
4*a*c+b^2)^(1/2))*c)^(1/2))*a*b^2-3/8/c^2/(16*a^2*c^2-8*a*b^2*c+b^4)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)
*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^4+33/2/(16*a^2*c^2-8*a*b^2*c+b^4)/(-4*a*c+b^2)
^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*
a^2*b-33/8/c/(16*a^2*c^2-8*a*b^2*c+b^4)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x
^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b^3+3/8/c^2/(16*a^2*c^2-8*a*b^2*c+b^4)/(-4*a*c+b^2)^(1/2
)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^5+2
1/2/(16*a^2*c^2-8*a*b^2*c+b^4)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b
^2)^(1/2))*c)^(1/2))*a^2-27/8/c/(16*a^2*c^2-8*a*b^2*c+b^4)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(
1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b^2+3/8/c^2/(16*a^2*c^2-8*a*b^2*c+b^4)*2^(1/2)/((b+(-4*a*c+
b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^4+33/2/(16*a^2*c^2-8*a*b^2*c
+b^4)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1
/2))*c)^(1/2))*a^2*b-33/8/c/(16*a^2*c^2-8*a*b^2*c+b^4)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(
1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b^3+3/8/c^2/(16*a^2*c^2-8*a*b^2*c+b^4)/(-4*a
*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/
2))*b^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{3 \,{\left (b^{3} c - 8 \, a b c^{2}\right )} x^{\frac{9}{2}} +{\left (b^{4} - 11 \, a b^{2} c - 44 \, a^{2} c^{2}\right )} x^{\frac{7}{2}} + 2 \,{\left (a b^{3} - 22 \, a^{2} b c\right )} x^{\frac{5}{2}} +{\left (a^{2} b^{2} - 28 \, a^{3} c\right )} x^{\frac{3}{2}}}{4 \,{\left (a^{2} b^{4} c - 8 \, a^{3} b^{2} c^{2} + 16 \, a^{4} c^{3} +{\left (b^{4} c^{3} - 8 \, a b^{2} c^{4} + 16 \, a^{2} c^{5}\right )} x^{4} + 2 \,{\left (b^{5} c^{2} - 8 \, a b^{3} c^{3} + 16 \, a^{2} b c^{4}\right )} x^{3} +{\left (b^{6} c - 6 \, a b^{4} c^{2} + 32 \, a^{3} c^{4}\right )} x^{2} + 2 \,{\left (a b^{5} c - 8 \, a^{2} b^{3} c^{2} + 16 \, a^{3} b c^{3}\right )} x\right )}} + \int -\frac{3 \,{\left ({\left (b^{3} - 8 \, a b c\right )} x^{\frac{3}{2}} +{\left (a b^{2} - 28 \, a^{2} c\right )} \sqrt{x}\right )}}{8 \,{\left (a b^{4} c - 8 \, a^{2} b^{2} c^{2} + 16 \, a^{3} c^{3} +{\left (b^{4} c^{2} - 8 \, a b^{2} c^{3} + 16 \, a^{2} c^{4}\right )} x^{2} +{\left (b^{5} c - 8 \, a b^{3} c^{2} + 16 \, a^{2} b c^{3}\right )} x\right )}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^2+b*x+a)^3,x, algorithm="maxima")

[Out]

1/4*(3*(b^3*c - 8*a*b*c^2)*x^(9/2) + (b^4 - 11*a*b^2*c - 44*a^2*c^2)*x^(7/2) + 2*(a*b^3 - 22*a^2*b*c)*x^(5/2)
+ (a^2*b^2 - 28*a^3*c)*x^(3/2))/(a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3 + (b^4*c^3 - 8*a*b^2*c^4 + 16*a^2*c^5)
*x^4 + 2*(b^5*c^2 - 8*a*b^3*c^3 + 16*a^2*b*c^4)*x^3 + (b^6*c - 6*a*b^4*c^2 + 32*a^3*c^4)*x^2 + 2*(a*b^5*c - 8*
a^2*b^3*c^2 + 16*a^3*b*c^3)*x) + integrate(-3/8*((b^3 - 8*a*b*c)*x^(3/2) + (a*b^2 - 28*a^2*c)*sqrt(x))/(a*b^4*
c - 8*a^2*b^2*c^2 + 16*a^3*c^3 + (b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^2 + (b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^
3)*x), x)

________________________________________________________________________________________

Fricas [B]  time = 7.06918, size = 9743, normalized size = 25.05 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^2+b*x+a)^3,x, algorithm="fricas")

[Out]

-1/8*(3*sqrt(1/2)*(a^2*b^4*c^2 - 8*a^3*b^2*c^3 + 16*a^4*c^4 + (b^4*c^4 - 8*a*b^2*c^5 + 16*a^2*c^6)*x^4 + 2*(b^
5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*x^3 + (b^6*c^2 - 6*a*b^4*c^3 + 32*a^3*c^5)*x^2 + 2*(a*b^5*c^2 - 8*a^2*b^3*
c^3 + 16*a^3*b*c^4)*x)*sqrt(-(b^9 - 21*a*b^7*c + 189*a^2*b^5*c^2 - 840*a^3*b^3*c^3 + 1680*a^4*b*c^4 + (b^10*c^
5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10)*sqrt((b^8 - 22*a*b^6*
c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401*a^4*c^4)/(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12 - 640*a^3
*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15)))/(b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8
+ 1280*a^4*b^2*c^9 - 1024*a^5*c^10))*log(27/2*sqrt(1/2)*(b^13 - 31*a*b^11*c + 413*a^2*b^9*c^2 - 3012*a^3*b^7*c
^3 + 12496*a^4*b^5*c^4 - 27584*a^5*b^3*c^5 + 25088*a^6*b*c^6 - (b^14*c^5 - 30*a*b^12*c^6 + 416*a^2*b^10*c^7 -
3360*a^3*b^8*c^8 + 16640*a^4*b^6*c^9 - 49664*a^5*b^4*c^10 + 81920*a^6*b^2*c^11 - 57344*a^7*c^12)*sqrt((b^8 - 2
2*a*b^6*c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401*a^4*c^4)/(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12 -
640*a^3*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15)))*sqrt(-(b^9 - 21*a*b^7*c + 189*a^2*b^5*c^2 - 840*a^3*b
^3*c^3 + 1680*a^4*b*c^4 + (b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 10
24*a^5*c^10)*sqrt((b^8 - 22*a*b^6*c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401*a^4*c^4)/(b^10*c^10 - 20*a*b^8
*c^11 + 160*a^2*b^6*c^12 - 640*a^3*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15)))/(b^10*c^5 - 20*a*b^8*c^6 +
160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10)) + 27*(21*a^2*b^8 - 447*a^3*b^6*c + 4189
*a^4*b^4*c^2 - 19208*a^5*b^2*c^3 + 38416*a^6*c^4)*sqrt(x)) - 3*sqrt(1/2)*(a^2*b^4*c^2 - 8*a^3*b^2*c^3 + 16*a^4
*c^4 + (b^4*c^4 - 8*a*b^2*c^5 + 16*a^2*c^6)*x^4 + 2*(b^5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*x^3 + (b^6*c^2 - 6*
a*b^4*c^3 + 32*a^3*c^5)*x^2 + 2*(a*b^5*c^2 - 8*a^2*b^3*c^3 + 16*a^3*b*c^4)*x)*sqrt(-(b^9 - 21*a*b^7*c + 189*a^
2*b^5*c^2 - 840*a^3*b^3*c^3 + 1680*a^4*b*c^4 + (b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 +
1280*a^4*b^2*c^9 - 1024*a^5*c^10)*sqrt((b^8 - 22*a*b^6*c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401*a^4*c^4)/
(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12 - 640*a^3*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15)))/(b^10*
c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10))*log(-27/2*sqrt(1/2
)*(b^13 - 31*a*b^11*c + 413*a^2*b^9*c^2 - 3012*a^3*b^7*c^3 + 12496*a^4*b^5*c^4 - 27584*a^5*b^3*c^5 + 25088*a^6
*b*c^6 - (b^14*c^5 - 30*a*b^12*c^6 + 416*a^2*b^10*c^7 - 3360*a^3*b^8*c^8 + 16640*a^4*b^6*c^9 - 49664*a^5*b^4*c
^10 + 81920*a^6*b^2*c^11 - 57344*a^7*c^12)*sqrt((b^8 - 22*a*b^6*c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401*
a^4*c^4)/(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12 - 640*a^3*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15)
))*sqrt(-(b^9 - 21*a*b^7*c + 189*a^2*b^5*c^2 - 840*a^3*b^3*c^3 + 1680*a^4*b*c^4 + (b^10*c^5 - 20*a*b^8*c^6 + 1
60*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10)*sqrt((b^8 - 22*a*b^6*c + 219*a^2*b^4*c^2
- 1078*a^3*b^2*c^3 + 2401*a^4*c^4)/(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12 - 640*a^3*b^4*c^13 + 1280*a^4
*b^2*c^14 - 1024*a^5*c^15)))/(b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 -
1024*a^5*c^10)) + 27*(21*a^2*b^8 - 447*a^3*b^6*c + 4189*a^4*b^4*c^2 - 19208*a^5*b^2*c^3 + 38416*a^6*c^4)*sqrt
(x)) + 3*sqrt(1/2)*(a^2*b^4*c^2 - 8*a^3*b^2*c^3 + 16*a^4*c^4 + (b^4*c^4 - 8*a*b^2*c^5 + 16*a^2*c^6)*x^4 + 2*(b
^5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*x^3 + (b^6*c^2 - 6*a*b^4*c^3 + 32*a^3*c^5)*x^2 + 2*(a*b^5*c^2 - 8*a^2*b^3
*c^3 + 16*a^3*b*c^4)*x)*sqrt(-(b^9 - 21*a*b^7*c + 189*a^2*b^5*c^2 - 840*a^3*b^3*c^3 + 1680*a^4*b*c^4 - (b^10*c
^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10)*sqrt((b^8 - 22*a*b^6
*c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401*a^4*c^4)/(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12 - 640*a^
3*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15)))/(b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8
+ 1280*a^4*b^2*c^9 - 1024*a^5*c^10))*log(27/2*sqrt(1/2)*(b^13 - 31*a*b^11*c + 413*a^2*b^9*c^2 - 3012*a^3*b^7*
c^3 + 12496*a^4*b^5*c^4 - 27584*a^5*b^3*c^5 + 25088*a^6*b*c^6 + (b^14*c^5 - 30*a*b^12*c^6 + 416*a^2*b^10*c^7 -
3360*a^3*b^8*c^8 + 16640*a^4*b^6*c^9 - 49664*a^5*b^4*c^10 + 81920*a^6*b^2*c^11 - 57344*a^7*c^12)*sqrt((b^8 -
22*a*b^6*c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401*a^4*c^4)/(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12
- 640*a^3*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15)))*sqrt(-(b^9 - 21*a*b^7*c + 189*a^2*b^5*c^2 - 840*a^3*
b^3*c^3 + 1680*a^4*b*c^4 - (b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1
024*a^5*c^10)*sqrt((b^8 - 22*a*b^6*c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401*a^4*c^4)/(b^10*c^10 - 20*a*b^
8*c^11 + 160*a^2*b^6*c^12 - 640*a^3*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15)))/(b^10*c^5 - 20*a*b^8*c^6 +
160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10)) + 27*(21*a^2*b^8 - 447*a^3*b^6*c + 418
9*a^4*b^4*c^2 - 19208*a^5*b^2*c^3 + 38416*a^6*c^4)*sqrt(x)) - 3*sqrt(1/2)*(a^2*b^4*c^2 - 8*a^3*b^2*c^3 + 16*a^
4*c^4 + (b^4*c^4 - 8*a*b^2*c^5 + 16*a^2*c^6)*x^4 + 2*(b^5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*x^3 + (b^6*c^2 - 6
*a*b^4*c^3 + 32*a^3*c^5)*x^2 + 2*(a*b^5*c^2 - 8*a^2*b^3*c^3 + 16*a^3*b*c^4)*x)*sqrt(-(b^9 - 21*a*b^7*c + 189*a
^2*b^5*c^2 - 840*a^3*b^3*c^3 + 1680*a^4*b*c^4 - (b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 +
1280*a^4*b^2*c^9 - 1024*a^5*c^10)*sqrt((b^8 - 22*a*b^6*c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401*a^4*c^4)
/(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12 - 640*a^3*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15)))/(b^10
*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10))*log(-27/2*sqrt(1/
2)*(b^13 - 31*a*b^11*c + 413*a^2*b^9*c^2 - 3012*a^3*b^7*c^3 + 12496*a^4*b^5*c^4 - 27584*a^5*b^3*c^5 + 25088*a^
6*b*c^6 + (b^14*c^5 - 30*a*b^12*c^6 + 416*a^2*b^10*c^7 - 3360*a^3*b^8*c^8 + 16640*a^4*b^6*c^9 - 49664*a^5*b^4*
c^10 + 81920*a^6*b^2*c^11 - 57344*a^7*c^12)*sqrt((b^8 - 22*a*b^6*c + 219*a^2*b^4*c^2 - 1078*a^3*b^2*c^3 + 2401
*a^4*c^4)/(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12 - 640*a^3*b^4*c^13 + 1280*a^4*b^2*c^14 - 1024*a^5*c^15
)))*sqrt(-(b^9 - 21*a*b^7*c + 189*a^2*b^5*c^2 - 840*a^3*b^3*c^3 + 1680*a^4*b*c^4 - (b^10*c^5 - 20*a*b^8*c^6 +
160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10)*sqrt((b^8 - 22*a*b^6*c + 219*a^2*b^4*c^2
- 1078*a^3*b^2*c^3 + 2401*a^4*c^4)/(b^10*c^10 - 20*a*b^8*c^11 + 160*a^2*b^6*c^12 - 640*a^3*b^4*c^13 + 1280*a^
4*b^2*c^14 - 1024*a^5*c^15)))/(b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9
- 1024*a^5*c^10)) + 27*(21*a^2*b^8 - 447*a^3*b^6*c + 4189*a^4*b^4*c^2 - 19208*a^5*b^2*c^3 + 38416*a^6*c^4)*sqr
t(x)) + 2*(3*a^2*b^3 - 24*a^3*b*c + (5*b^4*c - 37*a*b^2*c^2 + 44*a^2*c^3)*x^3 + (3*b^5 - 20*a*b^3*c - 4*a^2*b*
c^2)*x^2 + (6*a*b^4 - 49*a^2*b^2*c + 28*a^3*c^2)*x)*sqrt(x))/(a^2*b^4*c^2 - 8*a^3*b^2*c^3 + 16*a^4*c^4 + (b^4*
c^4 - 8*a*b^2*c^5 + 16*a^2*c^6)*x^4 + 2*(b^5*c^3 - 8*a*b^3*c^4 + 16*a^2*b*c^5)*x^3 + (b^6*c^2 - 6*a*b^4*c^3 +
32*a^3*c^5)*x^2 + 2*(a*b^5*c^2 - 8*a^2*b^3*c^3 + 16*a^3*b*c^4)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(9/2)/(c*x**2+b*x+a)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^2+b*x+a)^3,x, algorithm="giac")

[Out]

Timed out