### 3.2293 $$\int \frac{1}{(d+e x)^{3/2} (a+b x+c x^2)} \, dx$$

Optimal. Leaf size=310 $-\frac{\sqrt{2} \sqrt{c} \left (2 c d-e \left (\sqrt{b^2-4 a c}+b\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )} \left (a e^2-b d e+c d^2\right )}+\frac{\sqrt{2} \sqrt{c} \left (2 c d-e \left (b-\sqrt{b^2-4 a c}\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )} \left (a e^2-b d e+c d^2\right )}-\frac{2 e}{\sqrt{d+e x} \left (a e^2-b d e+c d^2\right )}$

[Out]

(-2*e)/((c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x]) - (Sqrt[2]*Sqrt[c]*(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*ArcTanh[
(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b -
Sqrt[b^2 - 4*a*c])*e]*(c*d^2 - b*d*e + a*e^2)) + (Sqrt[2]*Sqrt[c]*(2*c*d - (b - Sqrt[b^2 - 4*a*c])*e)*ArcTanh
[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e]*(c*d^2 - b*d*e + a*e^2))

________________________________________________________________________________________

Rubi [A]  time = 0.728792, antiderivative size = 310, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.182, Rules used = {709, 826, 1166, 208} $-\frac{\sqrt{2} \sqrt{c} \left (2 c d-e \left (\sqrt{b^2-4 a c}+b\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )} \left (a e^2-b d e+c d^2\right )}+\frac{\sqrt{2} \sqrt{c} \left (2 c d-e \left (b-\sqrt{b^2-4 a c}\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )} \left (a e^2-b d e+c d^2\right )}-\frac{2 e}{\sqrt{d+e x} \left (a e^2-b d e+c d^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^(3/2)*(a + b*x + c*x^2)),x]

[Out]

(-2*e)/((c*d^2 - b*d*e + a*e^2)*Sqrt[d + e*x]) - (Sqrt[2]*Sqrt[c]*(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)*ArcTanh[
(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b -
Sqrt[b^2 - 4*a*c])*e]*(c*d^2 - b*d*e + a*e^2)) + (Sqrt[2]*Sqrt[c]*(2*c*d - (b - Sqrt[b^2 - 4*a*c])*e)*ArcTanh
[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b
+ Sqrt[b^2 - 4*a*c])*e]*(c*d^2 - b*d*e + a*e^2))

Rule 709

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1))/((m
+ 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/(c*d^2 - b*d*e + a*e^2), Int[((d + e*x)^(m + 1)*Simp[c*d - b*e - c
*e*x, x])/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*
e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[m, -1]

Rule 826

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2,
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{3/2} \left (a+b x+c x^2\right )} \, dx &=-\frac{2 e}{\left (c d^2-b d e+a e^2\right ) \sqrt{d+e x}}+\frac{\int \frac{c d-b e-c e x}{\sqrt{d+e x} \left (a+b x+c x^2\right )} \, dx}{c d^2-b d e+a e^2}\\ &=-\frac{2 e}{\left (c d^2-b d e+a e^2\right ) \sqrt{d+e x}}+\frac{2 \operatorname{Subst}\left (\int \frac{c d e+e (c d-b e)-c e x^2}{c d^2-b d e+a e^2+(-2 c d+b e) x^2+c x^4} \, dx,x,\sqrt{d+e x}\right )}{c d^2-b d e+a e^2}\\ &=-\frac{2 e}{\left (c d^2-b d e+a e^2\right ) \sqrt{d+e x}}-\frac{\left (c \left (2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{2} \sqrt{b^2-4 a c} e+\frac{1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt{d+e x}\right )}{\sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right )}+\frac{\left (c \left (2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{1}{2} \sqrt{b^2-4 a c} e+\frac{1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt{d+e x}\right )}{\sqrt{b^2-4 a c} \left (c d^2-b d e+a e^2\right )}\\ &=-\frac{2 e}{\left (c d^2-b d e+a e^2\right ) \sqrt{d+e x}}-\frac{\sqrt{2} \sqrt{c} \left (2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )}+\frac{\sqrt{2} \sqrt{c} \left (2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e} \left (c d^2-b d e+a e^2\right )}\\ \end{align*}

Mathematica [A]  time = 0.412327, size = 273, normalized size = 0.88 $\frac{2 \left (-\frac{\sqrt{c} \left (e \left (\sqrt{b^2-4 a c}+b\right )-2 c d\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{e \sqrt{b^2-4 a c}-b e+2 c d}}\right )}{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{e \left (\sqrt{b^2-4 a c}-b\right )+2 c d}}-\frac{\sqrt{c} \left (e \left (\sqrt{b^2-4 a c}-b\right )+2 c d\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{2} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{e}{\sqrt{d+e x}}\right )}{e (b d-a e)-c d^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)^(3/2)*(a + b*x + c*x^2)),x]

[Out]

(2*(e/Sqrt[d + e*x] - (Sqrt[c]*(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sq
rt[2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e]])/(Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e]) -
(Sqrt[c]*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + Sqrt[
b^2 - 4*a*c])*e]])/(Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])))/(-(c*d^2) + e*(b*d -
a*e))

________________________________________________________________________________________

Maple [B]  time = 0.258, size = 689, normalized size = 2.2 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(3/2)/(c*x^2+b*x+a),x)

[Out]

-2*e/(a*e^2-b*d*e+c*d^2)/(e*x+d)^(1/2)+c/(a*e^2-b*d*e+c*d^2)/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^
2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*
b*e^2-2*e*c^2/(a*e^2-b*d*e+c*d^2)/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1
/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*d-e*c/(a*e^2-b*d*e+c*d^2)*2
^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-
b^2))^(1/2))*c)^(1/2))+c/(a*e^2-b*d*e+c*d^2)/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^
(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b*e^2-2*e*c^2
/(a*e^2-b*d*e+c*d^2)/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh(
(e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*d+e*c/(a*e^2-b*d*e+c*d^2)*2^(1/2)/((-
b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(
1/2))*c)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{2} + b x + a\right )}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + b*x + a)*(e*x + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [B]  time = 6.49919, size = 23024, normalized size = 74.27 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*(c*d^3 - b*d^2*e + a*d*e^2 + (c*d^2*e - b*d*e^2 + a*e^3)*x)*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(
b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 + ((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b
^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c -
4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d
^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*
c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*
(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*
c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^
3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a
^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*
b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))/((b^2*c^3 - 4*a*c^4
)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^
2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*
a^4*c)*e^6))*log(sqrt(2)*(6*(b^2*c^3 - 4*a*c^4)*d^3*e^2 - 9*(b^3*c^2 - 4*a*b*c^3)*d^2*e^3 + (5*b^4*c - 22*a*b^
2*c^2 + 8*a^2*c^3)*d*e^4 - (b^5 - 5*a*b^3*c + 4*a^2*b*c^2)*e^5 - (2*(b^2*c^5 - 4*a*c^6)*d^8 - 8*(b^3*c^4 - 4*a
*b*c^5)*d^7*e + (13*b^4*c^3 - 48*a*b^2*c^4 - 16*a^2*c^5)*d^6*e^2 - (11*b^5*c^2 - 32*a*b^3*c^3 - 48*a^2*b*c^4)*
d^5*e^3 + 5*(b^6*c - a*b^4*c^2 - 12*a^2*b^2*c^3)*d^4*e^4 - (b^7 + 6*a*b^5*c - 40*a^2*b^3*c^2)*d^3*e^5 + (3*a*b
^6 - 9*a^2*b^4*c - 16*a^3*b^2*c^2 + 16*a^4*c^3)*d^2*e^6 - (3*a^2*b^5 - 16*a^3*b^3*c + 16*a^4*b*c^2)*d*e^7 + (a
^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*e^8)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^
4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*
b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5
)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a
^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*
a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2
*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^
3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^
2 - (b^3 - 3*a*b*c)*e^3 + ((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 -
4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 -
3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2
- 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 -
6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*
c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*
a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e
^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^
3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^
2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))/((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 -
4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*
(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)) - 4*(3*c
^4*d^2*e - 3*b*c^3*d*e^2 + (b^2*c^2 - a*c^3)*e^3)*sqrt(e*x + d)) - sqrt(2)*(c*d^3 - b*d^2*e + a*d*e^2 + (c*d^2
*e - b*d*e^2 + a*e^3)*x)*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 + (
(b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 +
2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e
^5 + (a^3*b^2 - 4*a^4*c)*e^6)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^
3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^
11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3
+ 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)
*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c
- 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5
- 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6
*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))/((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c
- 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^
3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6))*log(-sqrt(2)*(6*(b^2*c^3 - 4*a*c^4)
*d^3*e^2 - 9*(b^3*c^2 - 4*a*b*c^3)*d^2*e^3 + (5*b^4*c - 22*a*b^2*c^2 + 8*a^2*c^3)*d*e^4 - (b^5 - 5*a*b^3*c + 4
*a^2*b*c^2)*e^5 - (2*(b^2*c^5 - 4*a*c^6)*d^8 - 8*(b^3*c^4 - 4*a*b*c^5)*d^7*e + (13*b^4*c^3 - 48*a*b^2*c^4 - 16
*a^2*c^5)*d^6*e^2 - (11*b^5*c^2 - 32*a*b^3*c^3 - 48*a^2*b*c^4)*d^5*e^3 + 5*(b^6*c - a*b^4*c^2 - 12*a^2*b^2*c^3
)*d^4*e^4 - (b^7 + 6*a*b^5*c - 40*a^2*b^3*c^2)*d^3*e^5 + (3*a*b^6 - 9*a^2*b^4*c - 16*a^3*b^2*c^2 + 16*a^4*c^3)
*d^2*e^6 - (3*a^2*b^5 - 16*a^3*b^3*c + 16*a^4*b*c^2)*d*e^7 + (a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*e^8)*sqrt((9*
c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*
c + a^2*c^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8
*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^
3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*
b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*
e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9
+ 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^1
2)))*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 + ((b^2*c^3 - 4*a*c^4)*
d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*
b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^
4*c)*e^6)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5
+ (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4
- 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*
a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26
*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 -
40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a
^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*
b^2 - 4*a^7*c)*e^12)))/((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a
^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(
a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)) - 4*(3*c^4*d^2*e - 3*b*c^3*d*e^2 + (b^2*c^2 - a*c^3)*e^
3)*sqrt(e*x + d)) + sqrt(2)*(c*d^3 - b*d^2*e + a*d*e^2 + (c*d^2*e - b*d*e^2 + a*e^3)*x)*sqrt((2*c^3*d^3 - 3*b*
c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 - ((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^
3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 -
3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)*sqrt((9*c^4*d^4*e
^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c
^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)
*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^
8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 -
340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*
(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^
4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))/((b^
2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*
a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5
+ (a^3*b^2 - 4*a^4*c)*e^6))*log(sqrt(2)*(6*(b^2*c^3 - 4*a*c^4)*d^3*e^2 - 9*(b^3*c^2 - 4*a*b*c^3)*d^2*e^3 + (5*
b^4*c - 22*a*b^2*c^2 + 8*a^2*c^3)*d*e^4 - (b^5 - 5*a*b^3*c + 4*a^2*b*c^2)*e^5 + (2*(b^2*c^5 - 4*a*c^6)*d^8 - 8
*(b^3*c^4 - 4*a*b*c^5)*d^7*e + (13*b^4*c^3 - 48*a*b^2*c^4 - 16*a^2*c^5)*d^6*e^2 - (11*b^5*c^2 - 32*a*b^3*c^3 -
48*a^2*b*c^4)*d^5*e^3 + 5*(b^6*c - a*b^4*c^2 - 12*a^2*b^2*c^3)*d^4*e^4 - (b^7 + 6*a*b^5*c - 40*a^2*b^3*c^2)*d
^3*e^5 + (3*a*b^6 - 9*a^2*b^4*c - 16*a^3*b^2*c^2 + 16*a^4*c^3)*d^2*e^6 - (3*a^2*b^5 - 16*a^3*b^3*c + 16*a^4*b*
c^2)*d*e^7 + (a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*e^8)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 -
2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*
(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4
- 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2
*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6
- 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*
d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e
^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c
- 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 - ((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c -
3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*
c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3
+ 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*c^6 -
4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5
*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*
a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80
*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2
*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c
- 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))/((b^2*c^3 - 4*a*c^4)*d^6
- 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^
2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)
*e^6)) - 4*(3*c^4*d^2*e - 3*b*c^3*d*e^2 + (b^2*c^2 - a*c^3)*e^3)*sqrt(e*x + d)) - sqrt(2)*(c*d^3 - b*d^2*e + a
*d*e^2 + (c*d^2*e - b*d*e^2 + a*e^3)*x)*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3
*a*b*c)*e^3 - ((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d
^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 -
4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*
d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5
- 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2
*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3
- 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^
7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 -
10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(
a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))/((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d
^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a
^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6))*log(-sqrt(2)*(6*(b^2
*c^3 - 4*a*c^4)*d^3*e^2 - 9*(b^3*c^2 - 4*a*b*c^3)*d^2*e^3 + (5*b^4*c - 22*a*b^2*c^2 + 8*a^2*c^3)*d*e^4 - (b^5
- 5*a*b^3*c + 4*a^2*b*c^2)*e^5 + (2*(b^2*c^5 - 4*a*c^6)*d^8 - 8*(b^3*c^4 - 4*a*b*c^5)*d^7*e + (13*b^4*c^3 - 48
*a*b^2*c^4 - 16*a^2*c^5)*d^6*e^2 - (11*b^5*c^2 - 32*a*b^3*c^3 - 48*a^2*b*c^4)*d^5*e^3 + 5*(b^6*c - a*b^4*c^2 -
12*a^2*b^2*c^3)*d^4*e^4 - (b^7 + 6*a*b^5*c - 40*a^2*b^3*c^2)*d^3*e^5 + (3*a*b^6 - 9*a^2*b^4*c - 16*a^3*b^2*c^
2 + 16*a^4*c^3)*d^2*e^6 - (3*a^2*b^5 - 16*a^3*b^3*c + 16*a^4*b*c^2)*d*e^7 + (a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2
)*e^8)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 +
(b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e + 3*(5*b^4*c^4 - 1
8*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15*(b^6*c^2 - 15*a^2
*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*e^5 + (b^8 + 26*a*
b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30*a^3*b^3*c^2 - 40*
a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a^4*b^3*c - 12*a^5*
b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)*d*e^11 + (a^6*b^2
- 4*a^7*c)*e^12)))*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 - ((b^2*
c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*
b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 +
(a^3*b^2 - 4*a^4*c)*e^6)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c -
a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/((b^2*c^6 - 4*a*c^7)*d^12 - 6*(b^3*c^5 - 4*a*b*c^6)*d^11*e
+ 3*(5*b^4*c^4 - 18*a*b^2*c^5 - 8*a^2*c^6)*d^10*e^2 - 10*(2*b^5*c^3 - 5*a*b^3*c^4 - 12*a^2*b*c^5)*d^9*e^3 + 15
*(b^6*c^2 - 15*a^2*b^2*c^4 - 4*a^3*c^5)*d^8*e^4 - 6*(b^7*c + 6*a*b^5*c^2 - 30*a^2*b^3*c^3 - 40*a^3*b*c^4)*d^7*
e^5 + (b^8 + 26*a*b^6*c - 30*a^2*b^4*c^2 - 340*a^3*b^2*c^3 - 80*a^4*c^4)*d^6*e^6 - 6*(a*b^7 + 6*a^2*b^5*c - 30
*a^3*b^3*c^2 - 40*a^4*b*c^3)*d^5*e^7 + 15*(a^2*b^6 - 15*a^4*b^2*c^2 - 4*a^5*c^3)*d^4*e^8 - 10*(2*a^3*b^5 - 5*a
^4*b^3*c - 12*a^5*b*c^2)*d^3*e^9 + 3*(5*a^4*b^4 - 18*a^5*b^2*c - 8*a^6*c^2)*d^2*e^10 - 6*(a^5*b^3 - 4*a^6*b*c)
*d*e^11 + (a^6*b^2 - 4*a^7*c)*e^12)))/((b^2*c^3 - 4*a*c^4)*d^6 - 3*(b^3*c^2 - 4*a*b*c^3)*d^5*e + 3*(b^4*c - 3*
a*b^2*c^2 - 4*a^2*c^3)*d^4*e^2 - (b^5 + 2*a*b^3*c - 24*a^2*b*c^2)*d^3*e^3 + 3*(a*b^4 - 3*a^2*b^2*c - 4*a^3*c^2
)*d^2*e^4 - 3*(a^2*b^3 - 4*a^3*b*c)*d*e^5 + (a^3*b^2 - 4*a^4*c)*e^6)) - 4*(3*c^4*d^2*e - 3*b*c^3*d*e^2 + (b^2*
c^2 - a*c^3)*e^3)*sqrt(e*x + d)) - 4*sqrt(e*x + d)*e)/(c*d^3 - b*d^2*e + a*d*e^2 + (c*d^2*e - b*d*e^2 + a*e^3)
*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (d + e x\right )^{\frac{3}{2}} \left (a + b x + c x^{2}\right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(3/2)/(c*x**2+b*x+a),x)

[Out]

Integral(1/((d + e*x)**(3/2)*(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(c*x^2+b*x+a),x, algorithm="giac")

[Out]

Timed out