### 3.2290 $$\int \frac{(d+e x)^{3/2}}{a+b x+c x^2} \, dx$$

Optimal. Leaf size=322 $-\frac{\sqrt{2} \left (-2 c e \left (-d \sqrt{b^2-4 a c}+a e+b d\right )+b e^2 \left (b-\sqrt{b^2-4 a c}\right )+2 c^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{c^{3/2} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{\sqrt{2} \left (-2 c e \left (d \sqrt{b^2-4 a c}+a e+b d\right )+b e^2 \left (\sqrt{b^2-4 a c}+b\right )+2 c^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{c^{3/2} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{2 e \sqrt{d+e x}}{c}$

[Out]

(2*e*Sqrt[d + e*x])/c - (Sqrt[2]*(2*c^2*d^2 + b*(b - Sqrt[b^2 - 4*a*c])*e^2 - 2*c*e*(b*d - Sqrt[b^2 - 4*a*c]*d
+ a*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]])/(c^(3/2)*Sqrt[b^2 -
4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) + (Sqrt[2]*(2*c^2*d^2 + b*(b + Sqrt[b^2 - 4*a*c])*e^2 - 2*c*e
*(b*d + Sqrt[b^2 - 4*a*c]*d + a*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c
])*e]])/(c^(3/2)*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

________________________________________________________________________________________

Rubi [A]  time = 1.21587, antiderivative size = 322, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.182, Rules used = {703, 826, 1166, 208} $-\frac{\sqrt{2} \left (-2 c e \left (-d \sqrt{b^2-4 a c}+a e+b d\right )+b e^2 \left (b-\sqrt{b^2-4 a c}\right )+2 c^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}\right )}{c^{3/2} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}}+\frac{\sqrt{2} \left (-2 c e \left (d \sqrt{b^2-4 a c}+a e+b d\right )+b e^2 \left (\sqrt{b^2-4 a c}+b\right )+2 c^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{c^{3/2} \sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+\frac{2 e \sqrt{d+e x}}{c}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(3/2)/(a + b*x + c*x^2),x]

[Out]

(2*e*Sqrt[d + e*x])/c - (Sqrt[2]*(2*c^2*d^2 + b*(b - Sqrt[b^2 - 4*a*c])*e^2 - 2*c*e*(b*d - Sqrt[b^2 - 4*a*c]*d
+ a*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]])/(c^(3/2)*Sqrt[b^2 -
4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) + (Sqrt[2]*(2*c^2*d^2 + b*(b + Sqrt[b^2 - 4*a*c])*e^2 - 2*c*e
*(b*d + Sqrt[b^2 - 4*a*c]*d + a*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c
])*e]])/(c^(3/2)*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

Rule 703

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1))/(c*
(m - 1)), x] + Dist[1/c, Int[((d + e*x)^(m - 2)*Simp[c*d^2 - a*e^2 + e*(2*c*d - b*e)*x, x])/(a + b*x + c*x^2),
x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*
e, 0] && GtQ[m, 1]

Rule 826

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2,
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2}}{a+b x+c x^2} \, dx &=\frac{2 e \sqrt{d+e x}}{c}+\frac{\int \frac{c d^2-a e^2+e (2 c d-b e) x}{\sqrt{d+e x} \left (a+b x+c x^2\right )} \, dx}{c}\\ &=\frac{2 e \sqrt{d+e x}}{c}+\frac{2 \operatorname{Subst}\left (\int \frac{-d e (2 c d-b e)+e \left (c d^2-a e^2\right )+e (2 c d-b e) x^2}{c d^2-b d e+a e^2+(-2 c d+b e) x^2+c x^4} \, dx,x,\sqrt{d+e x}\right )}{c}\\ &=\frac{2 e \sqrt{d+e x}}{c}+\frac{\left (2 c^2 d^2+b \left (b-\sqrt{b^2-4 a c}\right ) e^2-2 c e \left (b d-\sqrt{b^2-4 a c} d+a e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{1}{2} \sqrt{b^2-4 a c} e+\frac{1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt{d+e x}\right )}{c \sqrt{b^2-4 a c}}-\frac{\left (2 c^2 d^2+b \left (b+\sqrt{b^2-4 a c}\right ) e^2-2 c e \left (b d+\sqrt{b^2-4 a c} d+a e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{2} \sqrt{b^2-4 a c} e+\frac{1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt{d+e x}\right )}{c \sqrt{b^2-4 a c}}\\ &=\frac{2 e \sqrt{d+e x}}{c}-\frac{\sqrt{2} \left (2 c^2 d^2+b \left (b-\sqrt{b^2-4 a c}\right ) e^2-2 c e \left (b d-\sqrt{b^2-4 a c} d+a e\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}}\right )}{c^{3/2} \sqrt{b^2-4 a c} \sqrt{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}}+\frac{\sqrt{2} \left (2 c^2 d^2+b \left (b+\sqrt{b^2-4 a c}\right ) e^2-2 c e \left (b d+\sqrt{b^2-4 a c} d+a e\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}}\right )}{c^{3/2} \sqrt{b^2-4 a c} \sqrt{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}}\\ \end{align*}

Mathematica [A]  time = 0.773262, size = 317, normalized size = 0.98 $\frac{\frac{\sqrt{2} \left (2 c e \left (-d \sqrt{b^2-4 a c}+a e+b d\right )+b e^2 \left (\sqrt{b^2-4 a c}-b\right )-2 c^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{e \sqrt{b^2-4 a c}-b e+2 c d}}\right )}{\sqrt{b^2-4 a c} \sqrt{e \left (\sqrt{b^2-4 a c}-b\right )+2 c d}}+\frac{\sqrt{2} \left (-2 c e \left (d \sqrt{b^2-4 a c}+a e+b d\right )+b e^2 \left (\sqrt{b^2-4 a c}+b\right )+2 c^2 d^2\right ) \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{d+e x}}{\sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}\right )}{\sqrt{b^2-4 a c} \sqrt{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}+2 \sqrt{c} e \sqrt{d+e x}}{c^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^(3/2)/(a + b*x + c*x^2),x]

[Out]

(2*Sqrt[c]*e*Sqrt[d + e*x] + (Sqrt[2]*(-2*c^2*d^2 + b*(-b + Sqrt[b^2 - 4*a*c])*e^2 + 2*c*e*(b*d - Sqrt[b^2 - 4
*a*c]*d + a*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e]])/(Sqrt[b^2 -
4*a*c]*Sqrt[2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e]) + (Sqrt[2]*(2*c^2*d^2 + b*(b + Sqrt[b^2 - 4*a*c])*e^2 - 2*c*e
*(b*d + Sqrt[b^2 - 4*a*c]*d + a*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c
])*e]])/(Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]))/c^(3/2)

________________________________________________________________________________________

Maple [B]  time = 0.264, size = 1138, normalized size = 3.5 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(c*x^2+b*x+a),x)

[Out]

2*e*(e*x+d)^(1/2)/c+2/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((
e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*a*e^3-1/c/(-e^2*(4*a*c-b^2))^(1/2)*2^(1
/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2
))^(1/2))*c)^(1/2))*b^2*e^3+2/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*
arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b*d*e^2-2*e*c/(-e^2*(4*a*c-b^2)
)^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^
2*(4*a*c-b^2))^(1/2))*c)^(1/2))*d^2-1/c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^
(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b*e^2+2*e*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2
))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*d+2/(-e^2*(4
*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*
e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*a*e^3-1/c/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a
*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b^2*
e^3+2/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c
*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b*d*e^2-2*e*c/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((-b*
e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/
2))*c)^(1/2))*d^2+1/c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/
((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*b*e^2-2*e*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(
1/2)*arctanh((e*x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))*d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{3}{2}}}{c x^{2} + b x + a}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Fricas [B]  time = 3.77658, size = 5581, normalized size = 17.33 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

-1/2*(sqrt(2)*c*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 + (b^2*c^3 -
4*a*c^4)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5
+ (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(sqrt(2)*(3*(b^2*c^2 - 4*a*c
^3)*d^2*e^2 - 3*(b^3*c - 4*a*b*c^2)*d*e^3 + (b^4 - 5*a*b^2*c + 4*a^2*c^2)*e^4 - (2*(b^2*c^4 - 4*a*c^5)*d - (b^
3*c^3 - 4*a*b*c^4)*e)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*
b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7)))*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2
*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 + (b^2*c^3 - 4*a*c^4)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*
b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7))
)/(b^2*c^3 - 4*a*c^4)) - 4*(3*c^3*d^4*e - 6*b*c^2*d^3*e^2 + 2*(2*b^2*c + a*c^2)*d^2*e^3 - (b^3 + 2*a*b*c)*d*e^
4 + (a*b^2 - a^2*c)*e^5)*sqrt(e*x + d)) - sqrt(2)*c*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^
2 - (b^3 - 3*a*b*c)*e^3 + (b^2*c^3 - 4*a*c^4)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)
*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c
^4))*log(-sqrt(2)*(3*(b^2*c^2 - 4*a*c^3)*d^2*e^2 - 3*(b^3*c - 4*a*b*c^2)*d*e^3 + (b^4 - 5*a*b^2*c + 4*a^2*c^2)
*e^4 - (2*(b^2*c^4 - 4*a*c^5)*d - (b^3*c^3 - 4*a*b*c^4)*e)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c
^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7)))*sqr
t((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 + (b^2*c^3 - 4*a*c^4)*sqrt((9*c
^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c
+ a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4)) - 4*(3*c^3*d^4*e - 6*b*c^2*d^3*e^2 + 2*(2*b^2*c +
a*c^2)*d^2*e^3 - (b^3 + 2*a*b*c)*d*e^4 + (a*b^2 - a^2*c)*e^5)*sqrt(e*x + d)) + sqrt(2)*c*sqrt((2*c^3*d^3 - 3*b
*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 - (b^2*c^3 - 4*a*c^4)*sqrt((9*c^4*d^4*e^2 - 18*b*
c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(
b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(sqrt(2)*(3*(b^2*c^2 - 4*a*c^3)*d^2*e^2 - 3*(b^3*c - 4*a*b*c^2)*d
*e^3 + (b^4 - 5*a*b^2*c + 4*a^2*c^2)*e^4 + (2*(b^2*c^4 - 4*a*c^5)*d - (b^3*c^3 - 4*a*b*c^4)*e)*sqrt((9*c^4*d^4
*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2
*c^2)*e^6)/(b^2*c^6 - 4*a*c^7)))*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)
*e^3 - (b^2*c^3 - 4*a*c^4)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c
- a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4)) - 4*(3*c^3*d^4
*e - 6*b*c^2*d^3*e^2 + 2*(2*b^2*c + a*c^2)*d^2*e^3 - (b^3 + 2*a*b*c)*d*e^4 + (a*b^2 - a^2*c)*e^5)*sqrt(e*x + d
)) - sqrt(2)*c*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 - (b^2*c^3 -
4*a*c^4)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5
+ (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(-sqrt(2)*(3*(b^2*c^2 - 4*a*c
^3)*d^2*e^2 - 3*(b^3*c - 4*a*b*c^2)*d*e^3 + (b^4 - 5*a*b^2*c + 4*a^2*c^2)*e^4 + (2*(b^2*c^4 - 4*a*c^5)*d - (b^
3*c^3 - 4*a*b*c^4)*e)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*
b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7)))*sqrt((2*c^3*d^3 - 3*b*c^2*d^2*e + 3*(b^2
*c - 2*a*c^2)*d*e^2 - (b^3 - 3*a*b*c)*e^3 - (b^2*c^3 - 4*a*c^4)*sqrt((9*c^4*d^4*e^2 - 18*b*c^3*d^3*e^3 + 3*(5*
b^2*c^2 - 2*a*c^3)*d^2*e^4 - 6*(b^3*c - a*b*c^2)*d*e^5 + (b^4 - 2*a*b^2*c + a^2*c^2)*e^6)/(b^2*c^6 - 4*a*c^7))
)/(b^2*c^3 - 4*a*c^4)) - 4*(3*c^3*d^4*e - 6*b*c^2*d^3*e^2 + 2*(2*b^2*c + a*c^2)*d^2*e^3 - (b^3 + 2*a*b*c)*d*e^
4 + (a*b^2 - a^2*c)*e^5)*sqrt(e*x + d)) - 4*sqrt(e*x + d)*e)/c

________________________________________________________________________________________

Sympy [B]  time = 162.641, size = 1443, normalized size = 4.48 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(c*x**2+b*x+a),x)

[Out]

-2*a*e**3*RootSum(_t**4*(256*a**3*c**2*e**6 - 128*a**2*b**2*c*e**6 - 256*a**2*b*c**2*d*e**5 + 256*a**2*c**3*d*
*2*e**4 + 16*a*b**4*e**6 + 128*a*b**3*c*d*e**5 - 128*a*b**2*c**2*d**2*e**4 - 16*b**5*d*e**5 + 16*b**4*c*d**2*e
**4) + _t**2*(-16*a*b*c*e**3 + 32*a*c**2*d*e**2 + 4*b**3*e**3 - 8*b**2*c*d*e**2) + c, Lambda(_t, _t*log(32*_t*
*3*a**2*b*e**5 - 64*_t**3*a**2*c*d*e**4 - 8*_t**3*a*b**3*e**5/c - 16*_t**3*a*b**2*d*e**4 + 96*_t**3*a*b*c*d**2
*e**3 - 64*_t**3*a*c**2*d**3*e**2 + 8*_t**3*b**4*d*e**4/c - 24*_t**3*b**3*d**2*e**3 + 16*_t**3*b**2*c*d**3*e**
2 + 4*_t*a*e**2 - 2*_t*b**2*e**2/c + 4*_t*b*d*e - 4*_t*c*d**2 + sqrt(d + e*x))))/c + 2*b*d*e**2*RootSum(_t**4*
(256*a**3*c**2*e**6 - 128*a**2*b**2*c*e**6 - 256*a**2*b*c**2*d*e**5 + 256*a**2*c**3*d**2*e**4 + 16*a*b**4*e**6
+ 128*a*b**3*c*d*e**5 - 128*a*b**2*c**2*d**2*e**4 - 16*b**5*d*e**5 + 16*b**4*c*d**2*e**4) + _t**2*(-16*a*b*c*
e**3 + 32*a*c**2*d*e**2 + 4*b**3*e**3 - 8*b**2*c*d*e**2) + c, Lambda(_t, _t*log(32*_t**3*a**2*b*e**5 - 64*_t**
3*a**2*c*d*e**4 - 8*_t**3*a*b**3*e**5/c - 16*_t**3*a*b**2*d*e**4 + 96*_t**3*a*b*c*d**2*e**3 - 64*_t**3*a*c**2*
d**3*e**2 + 8*_t**3*b**4*d*e**4/c - 24*_t**3*b**3*d**2*e**3 + 16*_t**3*b**2*c*d**3*e**2 + 4*_t*a*e**2 - 2*_t*b
**2*e**2/c + 4*_t*b*d*e - 4*_t*c*d**2 + sqrt(d + e*x))))/c - 2*b*e**2*RootSum(_t**4*(256*a**2*c**3*e**4 - 128*
a*b**2*c**2*e**4 + 16*b**4*c*e**4) + _t**2*(-16*a*b*c*e**3 + 32*a*c**2*d*e**2 + 4*b**3*e**3 - 8*b**2*c*d*e**2)
+ a*e**2 - b*d*e + c*d**2, Lambda(_t, _t*log(64*_t**3*a*c**2*e**2 - 16*_t**3*b**2*c*e**2 - 2*_t*b*e + 4*_t*c*
d + sqrt(d + e*x))))/c - 2*d**2*e*RootSum(_t**4*(256*a**3*c**2*e**6 - 128*a**2*b**2*c*e**6 - 256*a**2*b*c**2*d
*e**5 + 256*a**2*c**3*d**2*e**4 + 16*a*b**4*e**6 + 128*a*b**3*c*d*e**5 - 128*a*b**2*c**2*d**2*e**4 - 16*b**5*d
*e**5 + 16*b**4*c*d**2*e**4) + _t**2*(-16*a*b*c*e**3 + 32*a*c**2*d*e**2 + 4*b**3*e**3 - 8*b**2*c*d*e**2) + c,
Lambda(_t, _t*log(32*_t**3*a**2*b*e**5 - 64*_t**3*a**2*c*d*e**4 - 8*_t**3*a*b**3*e**5/c - 16*_t**3*a*b**2*d*e*
*4 + 96*_t**3*a*b*c*d**2*e**3 - 64*_t**3*a*c**2*d**3*e**2 + 8*_t**3*b**4*d*e**4/c - 24*_t**3*b**3*d**2*e**3 +
16*_t**3*b**2*c*d**3*e**2 + 4*_t*a*e**2 - 2*_t*b**2*e**2/c + 4*_t*b*d*e - 4*_t*c*d**2 + sqrt(d + e*x)))) + 4*d
*e*RootSum(_t**4*(256*a**2*c**3*e**4 - 128*a*b**2*c**2*e**4 + 16*b**4*c*e**4) + _t**2*(-16*a*b*c*e**3 + 32*a*c
**2*d*e**2 + 4*b**3*e**3 - 8*b**2*c*d*e**2) + a*e**2 - b*d*e + c*d**2, Lambda(_t, _t*log(64*_t**3*a*c**2*e**2
- 16*_t**3*b**2*c*e**2 - 2*_t*b*e + 4*_t*c*d + sqrt(d + e*x)))) + 2*e*sqrt(d + e*x)/c

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x+a),x, algorithm="giac")

[Out]

Timed out