### 3.2259 $$\int \frac{x^2}{1+x+x^2} \, dx$$

Optimal. Leaf size=32 $-\frac{1}{2} \log \left (x^2+x+1\right )+x-\frac{\tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )}{\sqrt{3}}$

[Out]

x - ArcTan[(1 + 2*x)/Sqrt[3]]/Sqrt[3] - Log[1 + x + x^2]/2

________________________________________________________________________________________

Rubi [A]  time = 0.0192937, antiderivative size = 32, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 12, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.417, Rules used = {703, 634, 618, 204, 628} $-\frac{1}{2} \log \left (x^2+x+1\right )+x-\frac{\tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )}{\sqrt{3}}$

Antiderivative was successfully veriﬁed.

[In]

Int[x^2/(1 + x + x^2),x]

[Out]

x - ArcTan[(1 + 2*x)/Sqrt[3]]/Sqrt[3] - Log[1 + x + x^2]/2

Rule 703

Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1))/(c*
(m - 1)), x] + Dist[1/c, Int[((d + e*x)^(m - 2)*Simp[c*d^2 - a*e^2 + e*(2*c*d - b*e)*x, x])/(a + b*x + c*x^2),
x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*
e, 0] && GtQ[m, 1]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^2}{1+x+x^2} \, dx &=x+\int \frac{-1-x}{1+x+x^2} \, dx\\ &=x-\frac{1}{2} \int \frac{1}{1+x+x^2} \, dx-\frac{1}{2} \int \frac{1+2 x}{1+x+x^2} \, dx\\ &=x-\frac{1}{2} \log \left (1+x+x^2\right )+\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+2 x\right )\\ &=x-\frac{\tan ^{-1}\left (\frac{1+2 x}{\sqrt{3}}\right )}{\sqrt{3}}-\frac{1}{2} \log \left (1+x+x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.0078181, size = 32, normalized size = 1. $-\frac{1}{2} \log \left (x^2+x+1\right )+x-\frac{\tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )}{\sqrt{3}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[x^2/(1 + x + x^2),x]

[Out]

x - ArcTan[(1 + 2*x)/Sqrt[3]]/Sqrt[3] - Log[1 + x + x^2]/2

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 28, normalized size = 0.9 \begin{align*} x-{\frac{\ln \left ({x}^{2}+x+1 \right ) }{2}}-{\frac{\sqrt{3}}{3}\arctan \left ({\frac{ \left ( 1+2\,x \right ) \sqrt{3}}{3}} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(x^2+x+1),x)

[Out]

x-1/2*ln(x^2+x+1)-1/3*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.50221, size = 36, normalized size = 1.12 \begin{align*} -\frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x + 1\right )}\right ) + x - \frac{1}{2} \, \log \left (x^{2} + x + 1\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^2+x+1),x, algorithm="maxima")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + x - 1/2*log(x^2 + x + 1)

________________________________________________________________________________________

Fricas [A]  time = 2.23919, size = 96, normalized size = 3. \begin{align*} -\frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x + 1\right )}\right ) + x - \frac{1}{2} \, \log \left (x^{2} + x + 1\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^2+x+1),x, algorithm="fricas")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + x - 1/2*log(x^2 + x + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.105458, size = 36, normalized size = 1.12 \begin{align*} x - \frac{\log{\left (x^{2} + x + 1 \right )}}{2} - \frac{\sqrt{3} \operatorname{atan}{\left (\frac{2 \sqrt{3} x}{3} + \frac{\sqrt{3}}{3} \right )}}{3} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(x**2+x+1),x)

[Out]

x - log(x**2 + x + 1)/2 - sqrt(3)*atan(2*sqrt(3)*x/3 + sqrt(3)/3)/3

________________________________________________________________________________________

Giac [A]  time = 1.0799, size = 36, normalized size = 1.12 \begin{align*} -\frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x + 1\right )}\right ) + x - \frac{1}{2} \, \log \left (x^{2} + x + 1\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(x^2+x+1),x, algorithm="giac")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + x - 1/2*log(x^2 + x + 1)