### 3.2241 $$\int \frac{1}{x (2+13 x+15 x^2)} \, dx$$

Optimal. Leaf size=27 $\frac{\log (x)}{2}+\frac{3}{14} \log (3 x+2)-\frac{5}{7} \log (5 x+1)$

[Out]

Log[x]/2 + (3*Log[2 + 3*x])/14 - (5*Log[1 + 5*x])/7

________________________________________________________________________________________

Rubi [A]  time = 0.0119905, antiderivative size = 27, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 16, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.25, Rules used = {705, 29, 632, 31} $\frac{\log (x)}{2}+\frac{3}{14} \log (3 x+2)-\frac{5}{7} \log (5 x+1)$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(x*(2 + 13*x + 15*x^2)),x]

[Out]

Log[x]/2 + (3*Log[2 + 3*x])/14 - (5*Log[1 + 5*x])/7

Rule 705

Int[1/(((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[e^2/(c*d^2 - b*d*e + a*e^2
), Int[1/(d + e*x), x], x] + Dist[1/(c*d^2 - b*d*e + a*e^2), Int[(c*d - b*e - c*e*x)/(a + b*x + c*x^2), x], x]
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 632

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[
(c*d - e*(b/2 - q/2))/q, Int[1/(b/2 - q/2 + c*x), x], x] - Dist[(c*d - e*(b/2 + q/2))/q, Int[1/(b/2 + q/2 + c*
x), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] && NiceSqrtQ[b^2 - 4*a*
c]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{1}{x \left (2+13 x+15 x^2\right )} \, dx &=\frac{1}{2} \int \frac{1}{x} \, dx+\frac{1}{2} \int \frac{-13-15 x}{2+13 x+15 x^2} \, dx\\ &=\frac{\log (x)}{2}+\frac{45}{14} \int \frac{1}{10+15 x} \, dx-\frac{75}{7} \int \frac{1}{3+15 x} \, dx\\ &=\frac{\log (x)}{2}+\frac{3}{14} \log (2+3 x)-\frac{5}{7} \log (1+5 x)\\ \end{align*}

Mathematica [A]  time = 0.0043299, size = 27, normalized size = 1. $\frac{\log (x)}{2}+\frac{3}{14} \log (3 x+2)-\frac{5}{7} \log (5 x+1)$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(x*(2 + 13*x + 15*x^2)),x]

[Out]

Log[x]/2 + (3*Log[2 + 3*x])/14 - (5*Log[1 + 5*x])/7

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 22, normalized size = 0.8 \begin{align*}{\frac{\ln \left ( x \right ) }{2}}+{\frac{3\,\ln \left ( 2+3\,x \right ) }{14}}-{\frac{5\,\ln \left ( 1+5\,x \right ) }{7}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(15*x^2+13*x+2),x)

[Out]

1/2*ln(x)+3/14*ln(2+3*x)-5/7*ln(1+5*x)

________________________________________________________________________________________

Maxima [A]  time = 0.969524, size = 28, normalized size = 1.04 \begin{align*} -\frac{5}{7} \, \log \left (5 \, x + 1\right ) + \frac{3}{14} \, \log \left (3 \, x + 2\right ) + \frac{1}{2} \, \log \left (x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(15*x^2+13*x+2),x, algorithm="maxima")

[Out]

-5/7*log(5*x + 1) + 3/14*log(3*x + 2) + 1/2*log(x)

________________________________________________________________________________________

Fricas [A]  time = 2.32869, size = 70, normalized size = 2.59 \begin{align*} -\frac{5}{7} \, \log \left (5 \, x + 1\right ) + \frac{3}{14} \, \log \left (3 \, x + 2\right ) + \frac{1}{2} \, \log \left (x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(15*x^2+13*x+2),x, algorithm="fricas")

[Out]

-5/7*log(5*x + 1) + 3/14*log(3*x + 2) + 1/2*log(x)

________________________________________________________________________________________

Sympy [A]  time = 0.126563, size = 24, normalized size = 0.89 \begin{align*} \frac{\log{\left (x \right )}}{2} - \frac{5 \log{\left (x + \frac{1}{5} \right )}}{7} + \frac{3 \log{\left (x + \frac{2}{3} \right )}}{14} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(15*x**2+13*x+2),x)

[Out]

log(x)/2 - 5*log(x + 1/5)/7 + 3*log(x + 2/3)/14

________________________________________________________________________________________

Giac [A]  time = 1.10404, size = 32, normalized size = 1.19 \begin{align*} -\frac{5}{7} \, \log \left ({\left | 5 \, x + 1 \right |}\right ) + \frac{3}{14} \, \log \left ({\left | 3 \, x + 2 \right |}\right ) + \frac{1}{2} \, \log \left ({\left | x \right |}\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(15*x^2+13*x+2),x, algorithm="giac")

[Out]

-5/7*log(abs(5*x + 1)) + 3/14*log(abs(3*x + 2)) + 1/2*log(abs(x))