### 3.2214 $$\int \frac{(d+e x)^4}{(a+b x+c x^2)^4} \, dx$$

Optimal. Leaf size=259 $-\frac{2 (d+e x) \left (-c e (5 b d-a e)+b^2 e^2+5 c^2 d^2\right ) (-2 a e+x (2 c d-b e)+b d)}{\left (b^2-4 a c\right )^3 \left (a+b x+c x^2\right )}+\frac{8 \left (a e^2-b d e+c d^2\right ) \left (-c e (5 b d-a e)+b^2 e^2+5 c^2 d^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{7/2}}-\frac{(b+2 c x) (d+e x)^4}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^3}+\frac{(d+e x)^3 \left (-2 a c e-2 b^2 e+5 c x (2 c d-b e)+5 b c d\right )}{3 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )^2}$

[Out]

-((b + 2*c*x)*(d + e*x)^4)/(3*(b^2 - 4*a*c)*(a + b*x + c*x^2)^3) + ((d + e*x)^3*(5*b*c*d - 2*b^2*e - 2*a*c*e +
5*c*(2*c*d - b*e)*x))/(3*(b^2 - 4*a*c)^2*(a + b*x + c*x^2)^2) - (2*(5*c^2*d^2 + b^2*e^2 - c*e*(5*b*d - a*e))*
(d + e*x)*(b*d - 2*a*e + (2*c*d - b*e)*x))/((b^2 - 4*a*c)^3*(a + b*x + c*x^2)) + (8*(c*d^2 - b*d*e + a*e^2)*(5
*c^2*d^2 + b^2*e^2 - c*e*(5*b*d - a*e))*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(7/2)

________________________________________________________________________________________

Rubi [A]  time = 0.452233, antiderivative size = 259, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 20, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.25, Rules used = {736, 804, 722, 618, 206} $-\frac{2 (d+e x) \left (-c e (5 b d-a e)+b^2 e^2+5 c^2 d^2\right ) (-2 a e+x (2 c d-b e)+b d)}{\left (b^2-4 a c\right )^3 \left (a+b x+c x^2\right )}+\frac{8 \left (a e^2-b d e+c d^2\right ) \left (-c e (5 b d-a e)+b^2 e^2+5 c^2 d^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{7/2}}-\frac{(b+2 c x) (d+e x)^4}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^3}+\frac{(d+e x)^3 \left (-2 a c e-2 b^2 e+5 c x (2 c d-b e)+5 b c d\right )}{3 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^4/(a + b*x + c*x^2)^4,x]

[Out]

-((b + 2*c*x)*(d + e*x)^4)/(3*(b^2 - 4*a*c)*(a + b*x + c*x^2)^3) + ((d + e*x)^3*(5*b*c*d - 2*b^2*e - 2*a*c*e +
5*c*(2*c*d - b*e)*x))/(3*(b^2 - 4*a*c)^2*(a + b*x + c*x^2)^2) - (2*(5*c^2*d^2 + b^2*e^2 - c*e*(5*b*d - a*e))*
(d + e*x)*(b*d - 2*a*e + (2*c*d - b*e)*x))/((b^2 - 4*a*c)^3*(a + b*x + c*x^2)) + (8*(c*d^2 - b*d*e + a*e^2)*(5
*c^2*d^2 + b^2*e^2 - c*e*(5*b*d - a*e))*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(7/2)

Rule 736

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^m*(b + 2*
c*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[1/((p + 1)*(b^2 - 4*a*c)), Int[(d + e*x)^(m
- 1)*(b*e*m + 2*c*d*(2*p + 3) + 2*c*e*(m + 2*p + 3)*x)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d
, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && GtQ[m
, 0] && (LtQ[m, 1] || (ILtQ[m + 2*p + 3, 0] && NeQ[m, 2])) && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 804

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*(b*f - 2*a*g + (2*c*f - b*g)*x))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[(m
*(b*(e*f + d*g) - 2*(c*d*f + a*e*g)))/((p + 1)*(b^2 - 4*a*c)), Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)
, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[Sim
plify[m + 2*p + 3], 0] && LtQ[p, -1]

Rule 722

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(
d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[(2*(2*p + 3)*(c*d
^2 - b*d*e + a*e^2))/((p + 1)*(b^2 - 4*a*c)), Int[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ
[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m +
2*p + 2, 0] && LtQ[p, -1]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(d+e x)^4}{\left (a+b x+c x^2\right )^4} \, dx &=-\frac{(b+2 c x) (d+e x)^4}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^3}+\frac{\int \frac{(d+e x)^3 (-10 c d+4 b e-2 c e x)}{\left (a+b x+c x^2\right )^3} \, dx}{3 \left (b^2-4 a c\right )}\\ &=-\frac{(b+2 c x) (d+e x)^4}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^3}+\frac{(d+e x)^3 \left (5 b c d-2 b^2 e-2 a c e+5 c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )^2}+\frac{\left (2 \left (5 c^2 d^2+b^2 e^2-c e (5 b d-a e)\right )\right ) \int \frac{(d+e x)^2}{\left (a+b x+c x^2\right )^2} \, dx}{\left (b^2-4 a c\right )^2}\\ &=-\frac{(b+2 c x) (d+e x)^4}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^3}+\frac{(d+e x)^3 \left (5 b c d-2 b^2 e-2 a c e+5 c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )^2}-\frac{2 \left (5 c^2 d^2+b^2 e^2-c e (5 b d-a e)\right ) (d+e x) (b d-2 a e+(2 c d-b e) x)}{\left (b^2-4 a c\right )^3 \left (a+b x+c x^2\right )}-\frac{\left (4 \left (c d^2-b d e+a e^2\right ) \left (5 c^2 d^2+b^2 e^2-c e (5 b d-a e)\right )\right ) \int \frac{1}{a+b x+c x^2} \, dx}{\left (b^2-4 a c\right )^3}\\ &=-\frac{(b+2 c x) (d+e x)^4}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^3}+\frac{(d+e x)^3 \left (5 b c d-2 b^2 e-2 a c e+5 c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )^2}-\frac{2 \left (5 c^2 d^2+b^2 e^2-c e (5 b d-a e)\right ) (d+e x) (b d-2 a e+(2 c d-b e) x)}{\left (b^2-4 a c\right )^3 \left (a+b x+c x^2\right )}+\frac{\left (8 \left (c d^2-b d e+a e^2\right ) \left (5 c^2 d^2+b^2 e^2-c e (5 b d-a e)\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x\right )}{\left (b^2-4 a c\right )^3}\\ &=-\frac{(b+2 c x) (d+e x)^4}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^3}+\frac{(d+e x)^3 \left (5 b c d-2 b^2 e-2 a c e+5 c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )^2}-\frac{2 \left (5 c^2 d^2+b^2 e^2-c e (5 b d-a e)\right ) (d+e x) (b d-2 a e+(2 c d-b e) x)}{\left (b^2-4 a c\right )^3 \left (a+b x+c x^2\right )}+\frac{8 \left (c d^2-b d e+a e^2\right ) \left (5 c^2 d^2+b^2 e^2-c e (5 b d-a e)\right ) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{7/2}}\\ \end{align*}

Mathematica [B]  time = 1.07465, size = 572, normalized size = 2.21 $\frac{1}{3} \left (\frac{6 (b+2 c x) \left (c e^2 \left (a^2 e^2-6 a b d e+6 b^2 d^2\right )+b^2 e^3 (a e-b d)+2 c^2 d^2 e (3 a e-5 b d)+5 c^3 d^4\right )}{c \left (4 a c-b^2\right )^3 (a+x (b+c x))}+\frac{b c \left (-3 a^2 e^4+6 a c d e^2 (d+2 e x)+c^2 d^3 (d-4 e x)\right )+2 c^2 \left (a^2 e^3 (4 d+e x)-2 a c d^2 e (2 d+3 e x)+c^2 d^4 x\right )+2 b^2 c e^2 \left (3 c d^2 x-2 a e (d+e x)\right )+b^3 e^3 (a e-4 c d x)+b^4 e^4 x}{c^3 \left (4 a c-b^2\right ) (a+x (b+c x))^3}+\frac{b c^2 \left (17 a^2 e^4+6 a c d e^2 (d-2 e x)+5 c^2 d^3 (d-4 e x)\right )+2 c^3 \left (-a^2 e^3 (24 d+7 e x)+6 a c d^2 e^2 x+5 c^2 d^4 x\right )+2 b^2 c^2 e \left (a e^2 (9 d+5 e x)+c d^2 (6 e x-5 d)\right )+b^3 c e^2 \left (2 c d (3 d-e x)-7 a e^2\right )-b^4 c e^3 (4 d+e x)+b^5 e^4}{c^3 \left (b^2-4 a c\right )^2 (a+x (b+c x))^2}+\frac{24 \left (c e^2 \left (a^2 e^2-6 a b d e+6 b^2 d^2\right )+b^2 e^3 (a e-b d)+2 c^2 d^2 e (3 a e-5 b d)+5 c^3 d^4\right ) \tan ^{-1}\left (\frac{b+2 c x}{\sqrt{4 a c-b^2}}\right )}{\left (4 a c-b^2\right )^{7/2}}\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^4/(a + b*x + c*x^2)^4,x]

[Out]

((6*(5*c^3*d^4 + b^2*e^3*(-(b*d) + a*e) + 2*c^2*d^2*e*(-5*b*d + 3*a*e) + c*e^2*(6*b^2*d^2 - 6*a*b*d*e + a^2*e^
2))*(b + 2*c*x))/(c*(-b^2 + 4*a*c)^3*(a + x*(b + c*x))) + (b^4*e^4*x + b^3*e^3*(a*e - 4*c*d*x) + 2*b^2*c*e^2*(
3*c*d^2*x - 2*a*e*(d + e*x)) + b*c*(-3*a^2*e^4 + c^2*d^3*(d - 4*e*x) + 6*a*c*d*e^2*(d + 2*e*x)) + 2*c^2*(c^2*d
^4*x + a^2*e^3*(4*d + e*x) - 2*a*c*d^2*e*(2*d + 3*e*x)))/(c^3*(-b^2 + 4*a*c)*(a + x*(b + c*x))^3) + (b^5*e^4 -
b^4*c*e^3*(4*d + e*x) + b*c^2*(17*a^2*e^4 + 5*c^2*d^3*(d - 4*e*x) + 6*a*c*d*e^2*(d - 2*e*x)) + b^3*c*e^2*(-7*
a*e^2 + 2*c*d*(3*d - e*x)) + 2*b^2*c^2*e*(a*e^2*(9*d + 5*e*x) + c*d^2*(-5*d + 6*e*x)) + 2*c^3*(5*c^2*d^4*x + 6
*a*c*d^2*e^2*x - a^2*e^3*(24*d + 7*e*x)))/(c^3*(b^2 - 4*a*c)^2*(a + x*(b + c*x))^2) + (24*(5*c^3*d^4 + b^2*e^3
*(-(b*d) + a*e) + 2*c^2*d^2*e*(-5*b*d + 3*a*e) + c*e^2*(6*b^2*d^2 - 6*a*b*d*e + a^2*e^2))*ArcTan[(b + 2*c*x)/S
qrt[-b^2 + 4*a*c]])/(-b^2 + 4*a*c)^(7/2))/3

________________________________________________________________________________________

Maple [B]  time = 0.162, size = 1666, normalized size = 6.4 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^4/(c*x^2+b*x+a)^4,x)

[Out]

(4*(a^2*c*e^4+a*b^2*e^4-6*a*b*c*d*e^3+6*a*c^2*d^2*e^2-b^3*d*e^3+6*b^2*c*d^2*e^2-10*b*c^2*d^3*e+5*c^3*d^4)/(64*
a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)*c^2*x^5+10*(a^2*c*e^4+a*b^2*e^4-6*a*b*c*d*e^3+6*a*c^2*d^2*e^2-b^3*d*e^3
+6*b^2*c*d^2*e^2-10*b*c^2*d^3*e+5*c^3*d^4)/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)*b*c*x^4-1/3*(32*a^3*c^3*
e^4-102*a^2*b^2*c^2*e^4+192*a^2*b*c^3*d*e^3-192*a^2*c^4*d^2*e^2-10*a*b^4*c*e^4+164*a*b^3*c^2*d*e^3-324*a*b^2*c
^3*d^2*e^2+320*a*b*c^4*d^3*e-160*a*c^5*d^4-b^6*e^4+22*b^5*c*d*e^3-132*b^4*c^2*d^2*e^2+220*b^3*c^3*d^3*e-110*b^
2*c^4*d^4)/c/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)*x^3+(16*a^3*b*c^2*e^4-64*a^3*c^3*d*e^3+17*a^2*b^3*c*e^
4-48*a^2*b^2*c^2*d*e^3+96*a^2*b*c^3*d^2*e^2+a*b^5*e^4-34*a*b^4*c*d*e^3+102*a*b^3*c^2*d^2*e^2-160*a*b^2*c^3*d^3
*e+80*a*b*c^4*d^4+6*b^5*c*d^2*e^2-10*b^4*c^2*d^3*e+5*b^3*c^3*d^4)/c/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)
*x^2-(4*a^4*c^2*e^4-22*a^3*b^2*c*e^4+40*a^3*b*c^2*d*e^3+24*a^3*c^3*d^2*e^2-a^2*b^4*e^4+40*a^2*b^3*c*d*e^3-132*
a^2*b^2*c^2*d^2*e^2+88*a^2*b*c^3*d^3*e-44*a^2*c^4*d^4-6*a*b^4*c*d^2*e^2+36*a*b^3*c^2*d^3*e-18*a*b^2*c^3*d^4-2*
b^5*c*d^3*e+b^4*c^2*d^4)/c/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)*x+1/3*(26*a^4*b*c*e^4-64*a^4*c^2*d*e^3+a
^3*b^3*e^4-44*a^3*b^2*c*d*e^3+156*a^3*b*c^2*d^2*e^2-128*a^3*c^3*d^3*e+6*a^2*b^3*c*d^2*e^2-36*a^2*b^2*c^2*d^3*e
+66*a^2*b*c^3*d^4+2*a*b^4*c*d^3*e-13*a*b^3*c^2*d^4+b^5*c*d^4)/c/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6))/(c
*x^2+b*x+a)^3+8/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2
))*a^2*c*e^4+8/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2)
)*a*b^2*e^4-48/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2)
)*a*b*c*d*e^3+48/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/
2))*a*c^2*d^2*e^2-8/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^
(1/2))*b^3*d*e^3+48/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^
(1/2))*b^2*c*d^2*e^2-80/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b
^2)^(1/2))*b*c^2*d^3*e+40/(64*a^3*c^3-48*a^2*b^2*c^2+12*a*b^4*c-b^6)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c
-b^2)^(1/2))*c^3*d^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(c*x^2+b*x+a)^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.72364, size = 9528, normalized size = 36.79 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(c*x^2+b*x+a)^4,x, algorithm="fricas")

[Out]

[-1/3*(12*(5*(b^2*c^6 - 4*a*c^7)*d^4 - 10*(b^3*c^5 - 4*a*b*c^6)*d^3*e + 6*(b^4*c^4 - 3*a*b^2*c^5 - 4*a^2*c^6)*
d^2*e^2 - (b^5*c^3 + 2*a*b^3*c^4 - 24*a^2*b*c^5)*d*e^3 + (a*b^4*c^3 - 3*a^2*b^2*c^4 - 4*a^3*c^5)*e^4)*x^5 + (b
^7*c - 17*a*b^5*c^2 + 118*a^2*b^3*c^3 - 264*a^3*b*c^4)*d^4 + 2*(a*b^6*c - 22*a^2*b^4*c^2 + 8*a^3*b^2*c^3 + 256
*a^4*c^4)*d^3*e + 6*(a^2*b^5*c + 22*a^3*b^3*c^2 - 104*a^4*b*c^3)*d^2*e^2 - 4*(11*a^3*b^4*c - 28*a^4*b^2*c^2 -
64*a^5*c^3)*d*e^3 + (a^3*b^5 + 22*a^4*b^3*c - 104*a^5*b*c^2)*e^4 + 30*(5*(b^3*c^5 - 4*a*b*c^6)*d^4 - 10*(b^4*c
^4 - 4*a*b^2*c^5)*d^3*e + 6*(b^5*c^3 - 3*a*b^3*c^4 - 4*a^2*b*c^5)*d^2*e^2 - (b^6*c^2 + 2*a*b^4*c^3 - 24*a^2*b^
2*c^4)*d*e^3 + (a*b^5*c^2 - 3*a^2*b^3*c^3 - 4*a^3*b*c^4)*e^4)*x^4 + (10*(11*b^4*c^4 - 28*a*b^2*c^5 - 64*a^2*c^
6)*d^4 - 20*(11*b^5*c^3 - 28*a*b^3*c^4 - 64*a^2*b*c^5)*d^3*e + 12*(11*b^6*c^2 - 17*a*b^4*c^3 - 92*a^2*b^2*c^4
- 64*a^3*c^5)*d^2*e^2 - 2*(11*b^7*c + 38*a*b^5*c^2 - 232*a^2*b^3*c^3 - 384*a^3*b*c^4)*d*e^3 + (b^8 + 6*a*b^6*c
+ 62*a^2*b^4*c^2 - 440*a^3*b^2*c^3 + 128*a^4*c^4)*e^4)*x^3 + 3*(5*(b^5*c^3 + 12*a*b^3*c^4 - 64*a^2*b*c^5)*d^4
- 10*(b^6*c^2 + 12*a*b^4*c^3 - 64*a^2*b^2*c^4)*d^3*e + 6*(b^7*c + 13*a*b^5*c^2 - 52*a^2*b^3*c^3 - 64*a^3*b*c^
4)*d^2*e^2 - 2*(17*a*b^6*c - 44*a^2*b^4*c^2 - 64*a^3*b^2*c^3 - 128*a^4*c^4)*d*e^3 + (a*b^7 + 13*a^2*b^5*c - 52
*a^3*b^3*c^2 - 64*a^4*b*c^3)*e^4)*x^2 + 12*(5*a^3*c^4*d^4 - 10*a^3*b*c^3*d^3*e + (5*c^7*d^4 - 10*b*c^6*d^3*e +
6*(b^2*c^5 + a*c^6)*d^2*e^2 - (b^3*c^4 + 6*a*b*c^5)*d*e^3 + (a*b^2*c^4 + a^2*c^5)*e^4)*x^6 + 3*(5*b*c^6*d^4 -
10*b^2*c^5*d^3*e + 6*(b^3*c^4 + a*b*c^5)*d^2*e^2 - (b^4*c^3 + 6*a*b^2*c^4)*d*e^3 + (a*b^3*c^3 + a^2*b*c^4)*e^
4)*x^5 + 6*(a^3*b^2*c^2 + a^4*c^3)*d^2*e^2 - (a^3*b^3*c + 6*a^4*b*c^2)*d*e^3 + (a^4*b^2*c + a^5*c^2)*e^4 + 3*(
5*(b^2*c^5 + a*c^6)*d^4 - 10*(b^3*c^4 + a*b*c^5)*d^3*e + 6*(b^4*c^3 + 2*a*b^2*c^4 + a^2*c^5)*d^2*e^2 - (b^5*c^
2 + 7*a*b^3*c^3 + 6*a^2*b*c^4)*d*e^3 + (a*b^4*c^2 + 2*a^2*b^2*c^3 + a^3*c^4)*e^4)*x^4 + (5*(b^3*c^4 + 6*a*b*c^
5)*d^4 - 10*(b^4*c^3 + 6*a*b^2*c^4)*d^3*e + 6*(b^5*c^2 + 7*a*b^3*c^3 + 6*a^2*b*c^4)*d^2*e^2 - (b^6*c + 12*a*b^
4*c^2 + 36*a^2*b^2*c^3)*d*e^3 + (a*b^5*c + 7*a^2*b^3*c^2 + 6*a^3*b*c^3)*e^4)*x^3 + 3*(5*(a*b^2*c^4 + a^2*c^5)*
d^4 - 10*(a*b^3*c^3 + a^2*b*c^4)*d^3*e + 6*(a*b^4*c^2 + 2*a^2*b^2*c^3 + a^3*c^4)*d^2*e^2 - (a*b^5*c + 7*a^2*b^
3*c^2 + 6*a^3*b*c^3)*d*e^3 + (a^2*b^4*c + 2*a^3*b^2*c^2 + a^4*c^3)*e^4)*x^2 + 3*(5*a^2*b*c^4*d^4 - 10*a^2*b^2*
c^3*d^3*e + 6*(a^2*b^3*c^2 + a^3*b*c^3)*d^2*e^2 - (a^2*b^4*c + 6*a^3*b^2*c^2)*d*e^3 + (a^3*b^3*c + a^4*b*c^2)*
e^4)*x)*sqrt(b^2 - 4*a*c)*log((2*c^2*x^2 + 2*b*c*x + b^2 - 2*a*c - sqrt(b^2 - 4*a*c)*(2*c*x + b))/(c*x^2 + b*x
+ a)) - 3*((b^6*c^2 - 22*a*b^4*c^3 + 28*a^2*b^2*c^4 + 176*a^3*c^5)*d^4 - 2*(b^7*c - 22*a*b^5*c^2 + 28*a^2*b^3
*c^3 + 176*a^3*b*c^4)*d^3*e - 6*(a*b^6*c + 18*a^2*b^4*c^2 - 92*a^3*b^2*c^3 + 16*a^4*c^4)*d^2*e^2 + 40*(a^2*b^5
*c - 3*a^3*b^3*c^2 - 4*a^4*b*c^3)*d*e^3 - (a^2*b^6 + 18*a^3*b^4*c - 92*a^4*b^2*c^2 + 16*a^5*c^3)*e^4)*x)/(a^3*
b^8*c - 16*a^4*b^6*c^2 + 96*a^5*b^4*c^3 - 256*a^6*b^2*c^4 + 256*a^7*c^5 + (b^8*c^4 - 16*a*b^6*c^5 + 96*a^2*b^4
*c^6 - 256*a^3*b^2*c^7 + 256*a^4*c^8)*x^6 + 3*(b^9*c^3 - 16*a*b^7*c^4 + 96*a^2*b^5*c^5 - 256*a^3*b^3*c^6 + 256
*a^4*b*c^7)*x^5 + 3*(b^10*c^2 - 15*a*b^8*c^3 + 80*a^2*b^6*c^4 - 160*a^3*b^4*c^5 + 256*a^5*c^7)*x^4 + (b^11*c -
10*a*b^9*c^2 + 320*a^3*b^5*c^4 - 1280*a^4*b^3*c^5 + 1536*a^5*b*c^6)*x^3 + 3*(a*b^10*c - 15*a^2*b^8*c^2 + 80*a
^3*b^6*c^3 - 160*a^4*b^4*c^4 + 256*a^6*c^6)*x^2 + 3*(a^2*b^9*c - 16*a^3*b^7*c^2 + 96*a^4*b^5*c^3 - 256*a^5*b^3
*c^4 + 256*a^6*b*c^5)*x), -1/3*(12*(5*(b^2*c^6 - 4*a*c^7)*d^4 - 10*(b^3*c^5 - 4*a*b*c^6)*d^3*e + 6*(b^4*c^4 -
3*a*b^2*c^5 - 4*a^2*c^6)*d^2*e^2 - (b^5*c^3 + 2*a*b^3*c^4 - 24*a^2*b*c^5)*d*e^3 + (a*b^4*c^3 - 3*a^2*b^2*c^4 -
4*a^3*c^5)*e^4)*x^5 + (b^7*c - 17*a*b^5*c^2 + 118*a^2*b^3*c^3 - 264*a^3*b*c^4)*d^4 + 2*(a*b^6*c - 22*a^2*b^4*
c^2 + 8*a^3*b^2*c^3 + 256*a^4*c^4)*d^3*e + 6*(a^2*b^5*c + 22*a^3*b^3*c^2 - 104*a^4*b*c^3)*d^2*e^2 - 4*(11*a^3*
b^4*c - 28*a^4*b^2*c^2 - 64*a^5*c^3)*d*e^3 + (a^3*b^5 + 22*a^4*b^3*c - 104*a^5*b*c^2)*e^4 + 30*(5*(b^3*c^5 - 4
*a*b*c^6)*d^4 - 10*(b^4*c^4 - 4*a*b^2*c^5)*d^3*e + 6*(b^5*c^3 - 3*a*b^3*c^4 - 4*a^2*b*c^5)*d^2*e^2 - (b^6*c^2
+ 2*a*b^4*c^3 - 24*a^2*b^2*c^4)*d*e^3 + (a*b^5*c^2 - 3*a^2*b^3*c^3 - 4*a^3*b*c^4)*e^4)*x^4 + (10*(11*b^4*c^4 -
28*a*b^2*c^5 - 64*a^2*c^6)*d^4 - 20*(11*b^5*c^3 - 28*a*b^3*c^4 - 64*a^2*b*c^5)*d^3*e + 12*(11*b^6*c^2 - 17*a*
b^4*c^3 - 92*a^2*b^2*c^4 - 64*a^3*c^5)*d^2*e^2 - 2*(11*b^7*c + 38*a*b^5*c^2 - 232*a^2*b^3*c^3 - 384*a^3*b*c^4)
*d*e^3 + (b^8 + 6*a*b^6*c + 62*a^2*b^4*c^2 - 440*a^3*b^2*c^3 + 128*a^4*c^4)*e^4)*x^3 + 3*(5*(b^5*c^3 + 12*a*b^
3*c^4 - 64*a^2*b*c^5)*d^4 - 10*(b^6*c^2 + 12*a*b^4*c^3 - 64*a^2*b^2*c^4)*d^3*e + 6*(b^7*c + 13*a*b^5*c^2 - 52*
a^2*b^3*c^3 - 64*a^3*b*c^4)*d^2*e^2 - 2*(17*a*b^6*c - 44*a^2*b^4*c^2 - 64*a^3*b^2*c^3 - 128*a^4*c^4)*d*e^3 + (
a*b^7 + 13*a^2*b^5*c - 52*a^3*b^3*c^2 - 64*a^4*b*c^3)*e^4)*x^2 - 24*(5*a^3*c^4*d^4 - 10*a^3*b*c^3*d^3*e + (5*c
^7*d^4 - 10*b*c^6*d^3*e + 6*(b^2*c^5 + a*c^6)*d^2*e^2 - (b^3*c^4 + 6*a*b*c^5)*d*e^3 + (a*b^2*c^4 + a^2*c^5)*e^
4)*x^6 + 3*(5*b*c^6*d^4 - 10*b^2*c^5*d^3*e + 6*(b^3*c^4 + a*b*c^5)*d^2*e^2 - (b^4*c^3 + 6*a*b^2*c^4)*d*e^3 + (
a*b^3*c^3 + a^2*b*c^4)*e^4)*x^5 + 6*(a^3*b^2*c^2 + a^4*c^3)*d^2*e^2 - (a^3*b^3*c + 6*a^4*b*c^2)*d*e^3 + (a^4*b
^2*c + a^5*c^2)*e^4 + 3*(5*(b^2*c^5 + a*c^6)*d^4 - 10*(b^3*c^4 + a*b*c^5)*d^3*e + 6*(b^4*c^3 + 2*a*b^2*c^4 + a
^2*c^5)*d^2*e^2 - (b^5*c^2 + 7*a*b^3*c^3 + 6*a^2*b*c^4)*d*e^3 + (a*b^4*c^2 + 2*a^2*b^2*c^3 + a^3*c^4)*e^4)*x^4
+ (5*(b^3*c^4 + 6*a*b*c^5)*d^4 - 10*(b^4*c^3 + 6*a*b^2*c^4)*d^3*e + 6*(b^5*c^2 + 7*a*b^3*c^3 + 6*a^2*b*c^4)*d
^2*e^2 - (b^6*c + 12*a*b^4*c^2 + 36*a^2*b^2*c^3)*d*e^3 + (a*b^5*c + 7*a^2*b^3*c^2 + 6*a^3*b*c^3)*e^4)*x^3 + 3*
(5*(a*b^2*c^4 + a^2*c^5)*d^4 - 10*(a*b^3*c^3 + a^2*b*c^4)*d^3*e + 6*(a*b^4*c^2 + 2*a^2*b^2*c^3 + a^3*c^4)*d^2*
e^2 - (a*b^5*c + 7*a^2*b^3*c^2 + 6*a^3*b*c^3)*d*e^3 + (a^2*b^4*c + 2*a^3*b^2*c^2 + a^4*c^3)*e^4)*x^2 + 3*(5*a^
2*b*c^4*d^4 - 10*a^2*b^2*c^3*d^3*e + 6*(a^2*b^3*c^2 + a^3*b*c^3)*d^2*e^2 - (a^2*b^4*c + 6*a^3*b^2*c^2)*d*e^3 +
(a^3*b^3*c + a^4*b*c^2)*e^4)*x)*sqrt(-b^2 + 4*a*c)*arctan(-sqrt(-b^2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c)) - 3*
((b^6*c^2 - 22*a*b^4*c^3 + 28*a^2*b^2*c^4 + 176*a^3*c^5)*d^4 - 2*(b^7*c - 22*a*b^5*c^2 + 28*a^2*b^3*c^3 + 176*
a^3*b*c^4)*d^3*e - 6*(a*b^6*c + 18*a^2*b^4*c^2 - 92*a^3*b^2*c^3 + 16*a^4*c^4)*d^2*e^2 + 40*(a^2*b^5*c - 3*a^3*
b^3*c^2 - 4*a^4*b*c^3)*d*e^3 - (a^2*b^6 + 18*a^3*b^4*c - 92*a^4*b^2*c^2 + 16*a^5*c^3)*e^4)*x)/(a^3*b^8*c - 16*
a^4*b^6*c^2 + 96*a^5*b^4*c^3 - 256*a^6*b^2*c^4 + 256*a^7*c^5 + (b^8*c^4 - 16*a*b^6*c^5 + 96*a^2*b^4*c^6 - 256*
a^3*b^2*c^7 + 256*a^4*c^8)*x^6 + 3*(b^9*c^3 - 16*a*b^7*c^4 + 96*a^2*b^5*c^5 - 256*a^3*b^3*c^6 + 256*a^4*b*c^7)
*x^5 + 3*(b^10*c^2 - 15*a*b^8*c^3 + 80*a^2*b^6*c^4 - 160*a^3*b^4*c^5 + 256*a^5*c^7)*x^4 + (b^11*c - 10*a*b^9*c
^2 + 320*a^3*b^5*c^4 - 1280*a^4*b^3*c^5 + 1536*a^5*b*c^6)*x^3 + 3*(a*b^10*c - 15*a^2*b^8*c^2 + 80*a^3*b^6*c^3
- 160*a^4*b^4*c^4 + 256*a^6*c^6)*x^2 + 3*(a^2*b^9*c - 16*a^3*b^7*c^2 + 96*a^4*b^5*c^3 - 256*a^5*b^3*c^4 + 256*
a^6*b*c^5)*x)]

________________________________________________________________________________________

Sympy [B]  time = 121.526, size = 2547, normalized size = 9.83 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**4/(c*x**2+b*x+a)**4,x)

[Out]

-4*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*d*e + c*d**2)*(a*c*e**2 + b**2*e**2 - 5*b*c*d*e + 5*c**2*d**2)*log(x
+ (-1024*a**4*c**4*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*d*e + c*d**2)*(a*c*e**2 + b**2*e**2 - 5*b*c*d*e + 5
*c**2*d**2) + 1024*a**3*b**2*c**3*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*d*e + c*d**2)*(a*c*e**2 + b**2*e**2 -
5*b*c*d*e + 5*c**2*d**2) - 384*a**2*b**4*c**2*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*d*e + c*d**2)*(a*c*e**2
+ b**2*e**2 - 5*b*c*d*e + 5*c**2*d**2) + 4*a**2*b*c*e**4 + 64*a*b**6*c*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*
d*e + c*d**2)*(a*c*e**2 + b**2*e**2 - 5*b*c*d*e + 5*c**2*d**2) + 4*a*b**3*e**4 - 24*a*b**2*c*d*e**3 + 24*a*b*c
**2*d**2*e**2 - 4*b**8*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*d*e + c*d**2)*(a*c*e**2 + b**2*e**2 - 5*b*c*d*e
+ 5*c**2*d**2) - 4*b**4*d*e**3 + 24*b**3*c*d**2*e**2 - 40*b**2*c**2*d**3*e + 20*b*c**3*d**4)/(8*a**2*c**2*e**4
+ 8*a*b**2*c*e**4 - 48*a*b*c**2*d*e**3 + 48*a*c**3*d**2*e**2 - 8*b**3*c*d*e**3 + 48*b**2*c**2*d**2*e**2 - 80*
b*c**3*d**3*e + 40*c**4*d**4)) + 4*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*d*e + c*d**2)*(a*c*e**2 + b**2*e**2
- 5*b*c*d*e + 5*c**2*d**2)*log(x + (1024*a**4*c**4*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*d*e + c*d**2)*(a*c*e
**2 + b**2*e**2 - 5*b*c*d*e + 5*c**2*d**2) - 1024*a**3*b**2*c**3*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*d*e +
c*d**2)*(a*c*e**2 + b**2*e**2 - 5*b*c*d*e + 5*c**2*d**2) + 384*a**2*b**4*c**2*sqrt(-1/(4*a*c - b**2)**7)*(a*e*
*2 - b*d*e + c*d**2)*(a*c*e**2 + b**2*e**2 - 5*b*c*d*e + 5*c**2*d**2) + 4*a**2*b*c*e**4 - 64*a*b**6*c*sqrt(-1/
(4*a*c - b**2)**7)*(a*e**2 - b*d*e + c*d**2)*(a*c*e**2 + b**2*e**2 - 5*b*c*d*e + 5*c**2*d**2) + 4*a*b**3*e**4
- 24*a*b**2*c*d*e**3 + 24*a*b*c**2*d**2*e**2 + 4*b**8*sqrt(-1/(4*a*c - b**2)**7)*(a*e**2 - b*d*e + c*d**2)*(a*
c*e**2 + b**2*e**2 - 5*b*c*d*e + 5*c**2*d**2) - 4*b**4*d*e**3 + 24*b**3*c*d**2*e**2 - 40*b**2*c**2*d**3*e + 20
*b*c**3*d**4)/(8*a**2*c**2*e**4 + 8*a*b**2*c*e**4 - 48*a*b*c**2*d*e**3 + 48*a*c**3*d**2*e**2 - 8*b**3*c*d*e**3
+ 48*b**2*c**2*d**2*e**2 - 80*b*c**3*d**3*e + 40*c**4*d**4)) + (26*a**4*b*c*e**4 - 64*a**4*c**2*d*e**3 + a**3
*b**3*e**4 - 44*a**3*b**2*c*d*e**3 + 156*a**3*b*c**2*d**2*e**2 - 128*a**3*c**3*d**3*e + 6*a**2*b**3*c*d**2*e**
2 - 36*a**2*b**2*c**2*d**3*e + 66*a**2*b*c**3*d**4 + 2*a*b**4*c*d**3*e - 13*a*b**3*c**2*d**4 + b**5*c*d**4 + x
**5*(12*a**2*c**4*e**4 + 12*a*b**2*c**3*e**4 - 72*a*b*c**4*d*e**3 + 72*a*c**5*d**2*e**2 - 12*b**3*c**3*d*e**3
+ 72*b**2*c**4*d**2*e**2 - 120*b*c**5*d**3*e + 60*c**6*d**4) + x**4*(30*a**2*b*c**3*e**4 + 30*a*b**3*c**2*e**4
- 180*a*b**2*c**3*d*e**3 + 180*a*b*c**4*d**2*e**2 - 30*b**4*c**2*d*e**3 + 180*b**3*c**3*d**2*e**2 - 300*b**2*
c**4*d**3*e + 150*b*c**5*d**4) + x**3*(-32*a**3*c**3*e**4 + 102*a**2*b**2*c**2*e**4 - 192*a**2*b*c**3*d*e**3 +
192*a**2*c**4*d**2*e**2 + 10*a*b**4*c*e**4 - 164*a*b**3*c**2*d*e**3 + 324*a*b**2*c**3*d**2*e**2 - 320*a*b*c**
4*d**3*e + 160*a*c**5*d**4 + b**6*e**4 - 22*b**5*c*d*e**3 + 132*b**4*c**2*d**2*e**2 - 220*b**3*c**3*d**3*e + 1
10*b**2*c**4*d**4) + x**2*(48*a**3*b*c**2*e**4 - 192*a**3*c**3*d*e**3 + 51*a**2*b**3*c*e**4 - 144*a**2*b**2*c*
*2*d*e**3 + 288*a**2*b*c**3*d**2*e**2 + 3*a*b**5*e**4 - 102*a*b**4*c*d*e**3 + 306*a*b**3*c**2*d**2*e**2 - 480*
a*b**2*c**3*d**3*e + 240*a*b*c**4*d**4 + 18*b**5*c*d**2*e**2 - 30*b**4*c**2*d**3*e + 15*b**3*c**3*d**4) + x*(-
12*a**4*c**2*e**4 + 66*a**3*b**2*c*e**4 - 120*a**3*b*c**2*d*e**3 - 72*a**3*c**3*d**2*e**2 + 3*a**2*b**4*e**4 -
120*a**2*b**3*c*d*e**3 + 396*a**2*b**2*c**2*d**2*e**2 - 264*a**2*b*c**3*d**3*e + 132*a**2*c**4*d**4 + 18*a*b*
*4*c*d**2*e**2 - 108*a*b**3*c**2*d**3*e + 54*a*b**2*c**3*d**4 + 6*b**5*c*d**3*e - 3*b**4*c**2*d**4))/(192*a**6
*c**4 - 144*a**5*b**2*c**3 + 36*a**4*b**4*c**2 - 3*a**3*b**6*c + x**6*(192*a**3*c**7 - 144*a**2*b**2*c**6 + 36
*a*b**4*c**5 - 3*b**6*c**4) + x**5*(576*a**3*b*c**6 - 432*a**2*b**3*c**5 + 108*a*b**5*c**4 - 9*b**7*c**3) + x*
*4*(576*a**4*c**6 + 144*a**3*b**2*c**5 - 324*a**2*b**4*c**4 + 99*a*b**6*c**3 - 9*b**8*c**2) + x**3*(1152*a**4*
b*c**5 - 672*a**3*b**3*c**4 + 72*a**2*b**5*c**3 + 18*a*b**7*c**2 - 3*b**9*c) + x**2*(576*a**5*c**5 + 144*a**4*
b**2*c**4 - 324*a**3*b**4*c**3 + 99*a**2*b**6*c**2 - 9*a*b**8*c) + x*(576*a**5*b*c**4 - 432*a**4*b**3*c**3 + 1
08*a**3*b**5*c**2 - 9*a**2*b**7*c))

________________________________________________________________________________________

Giac [B]  time = 1.14049, size = 1524, normalized size = 5.88 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^4/(c*x^2+b*x+a)^4,x, algorithm="giac")

[Out]

-8*(5*c^3*d^4 - 10*b*c^2*d^3*e + 6*b^2*c*d^2*e^2 + 6*a*c^2*d^2*e^2 - b^3*d*e^3 - 6*a*b*c*d*e^3 + a*b^2*e^4 + a
^2*c*e^4)*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/((b^6 - 12*a*b^4*c + 48*a^2*b^2*c^2 - 64*a^3*c^3)*sqrt(-b^2 +
4*a*c)) - 1/3*(60*c^6*d^4*x^5 - 120*b*c^5*d^3*x^5*e + 150*b*c^5*d^4*x^4 + 72*b^2*c^4*d^2*x^5*e^2 + 72*a*c^5*d
^2*x^5*e^2 - 300*b^2*c^4*d^3*x^4*e + 110*b^2*c^4*d^4*x^3 + 160*a*c^5*d^4*x^3 - 12*b^3*c^3*d*x^5*e^3 - 72*a*b*c
^4*d*x^5*e^3 + 180*b^3*c^3*d^2*x^4*e^2 + 180*a*b*c^4*d^2*x^4*e^2 - 220*b^3*c^3*d^3*x^3*e - 320*a*b*c^4*d^3*x^3
*e + 15*b^3*c^3*d^4*x^2 + 240*a*b*c^4*d^4*x^2 + 12*a*b^2*c^3*x^5*e^4 + 12*a^2*c^4*x^5*e^4 - 30*b^4*c^2*d*x^4*e
^3 - 180*a*b^2*c^3*d*x^4*e^3 + 132*b^4*c^2*d^2*x^3*e^2 + 324*a*b^2*c^3*d^2*x^3*e^2 + 192*a^2*c^4*d^2*x^3*e^2 -
30*b^4*c^2*d^3*x^2*e - 480*a*b^2*c^3*d^3*x^2*e - 3*b^4*c^2*d^4*x + 54*a*b^2*c^3*d^4*x + 132*a^2*c^4*d^4*x + 3
0*a*b^3*c^2*x^4*e^4 + 30*a^2*b*c^3*x^4*e^4 - 22*b^5*c*d*x^3*e^3 - 164*a*b^3*c^2*d*x^3*e^3 - 192*a^2*b*c^3*d*x^
3*e^3 + 18*b^5*c*d^2*x^2*e^2 + 306*a*b^3*c^2*d^2*x^2*e^2 + 288*a^2*b*c^3*d^2*x^2*e^2 + 6*b^5*c*d^3*x*e - 108*a
*b^3*c^2*d^3*x*e - 264*a^2*b*c^3*d^3*x*e + b^5*c*d^4 - 13*a*b^3*c^2*d^4 + 66*a^2*b*c^3*d^4 + b^6*x^3*e^4 + 10*
a*b^4*c*x^3*e^4 + 102*a^2*b^2*c^2*x^3*e^4 - 32*a^3*c^3*x^3*e^4 - 102*a*b^4*c*d*x^2*e^3 - 144*a^2*b^2*c^2*d*x^2
*e^3 - 192*a^3*c^3*d*x^2*e^3 + 18*a*b^4*c*d^2*x*e^2 + 396*a^2*b^2*c^2*d^2*x*e^2 - 72*a^3*c^3*d^2*x*e^2 + 2*a*b
^4*c*d^3*e - 36*a^2*b^2*c^2*d^3*e - 128*a^3*c^3*d^3*e + 3*a*b^5*x^2*e^4 + 51*a^2*b^3*c*x^2*e^4 + 48*a^3*b*c^2*
x^2*e^4 - 120*a^2*b^3*c*d*x*e^3 - 120*a^3*b*c^2*d*x*e^3 + 6*a^2*b^3*c*d^2*e^2 + 156*a^3*b*c^2*d^2*e^2 + 3*a^2*
b^4*x*e^4 + 66*a^3*b^2*c*x*e^4 - 12*a^4*c^2*x*e^4 - 44*a^3*b^2*c*d*e^3 - 64*a^4*c^2*d*e^3 + a^3*b^3*e^4 + 26*a
^4*b*c*e^4)/((b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)*(c*x^2 + b*x + a)^3)