### 3.2203 $$\int \frac{(d+e x)^3}{(a+b x+c x^2)^3} \, dx$$

Optimal. Leaf size=158 $-\frac{6 (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}}-\frac{(b+2 c x) (d+e x)^3}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{3 (d+e x) (2 c d-b e) (-2 a e+x (2 c d-b e)+b d)}{2 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}$

[Out]

-((b + 2*c*x)*(d + e*x)^3)/(2*(b^2 - 4*a*c)*(a + b*x + c*x^2)^2) + (3*(2*c*d - b*e)*(d + e*x)*(b*d - 2*a*e + (
2*c*d - b*e)*x))/(2*(b^2 - 4*a*c)^2*(a + b*x + c*x^2)) - (6*(2*c*d - b*e)*(c*d^2 - b*d*e + a*e^2)*ArcTanh[(b +
2*c*x)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0882377, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 20, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.2, Rules used = {728, 722, 618, 206} $-\frac{6 (2 c d-b e) \left (a e^2-b d e+c d^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}}-\frac{(b+2 c x) (d+e x)^3}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{3 (d+e x) (2 c d-b e) (-2 a e+x (2 c d-b e)+b d)}{2 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^3/(a + b*x + c*x^2)^3,x]

[Out]

-((b + 2*c*x)*(d + e*x)^3)/(2*(b^2 - 4*a*c)*(a + b*x + c*x^2)^2) + (3*(2*c*d - b*e)*(d + e*x)*(b*d - 2*a*e + (
2*c*d - b*e)*x))/(2*(b^2 - 4*a*c)^2*(a + b*x + c*x^2)) - (6*(2*c*d - b*e)*(c*d^2 - b*d*e + a*e^2)*ArcTanh[(b +
2*c*x)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(5/2)

Rule 728

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^m*(b + 2*
c*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] + Dist[(m*(2*c*d - b*e))/((p + 1)*(b^2 - 4*a*c)),
Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c,
0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m + 2*p + 3, 0] && LtQ[p, -1]

Rule 722

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(
d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[(2*(2*p + 3)*(c*d
^2 - b*d*e + a*e^2))/((p + 1)*(b^2 - 4*a*c)), Int[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ
[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m +
2*p + 2, 0] && LtQ[p, -1]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(d+e x)^3}{\left (a+b x+c x^2\right )^3} \, dx &=-\frac{(b+2 c x) (d+e x)^3}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}-\frac{(3 (2 c d-b e)) \int \frac{(d+e x)^2}{\left (a+b x+c x^2\right )^2} \, dx}{2 \left (b^2-4 a c\right )}\\ &=-\frac{(b+2 c x) (d+e x)^3}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{3 (2 c d-b e) (d+e x) (b d-2 a e+(2 c d-b e) x)}{2 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}+\frac{\left (3 (2 c d-b e) \left (c d^2-b d e+a e^2\right )\right ) \int \frac{1}{a+b x+c x^2} \, dx}{\left (b^2-4 a c\right )^2}\\ &=-\frac{(b+2 c x) (d+e x)^3}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{3 (2 c d-b e) (d+e x) (b d-2 a e+(2 c d-b e) x)}{2 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}-\frac{\left (6 (2 c d-b e) \left (c d^2-b d e+a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x\right )}{\left (b^2-4 a c\right )^2}\\ &=-\frac{(b+2 c x) (d+e x)^3}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}+\frac{3 (2 c d-b e) (d+e x) (b d-2 a e+(2 c d-b e) x)}{2 \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}-\frac{6 (2 c d-b e) \left (c d^2-b d e+a e^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.440086, size = 308, normalized size = 1.95 $\frac{1}{2} \left (\frac{4 c^2 \left (-4 a^2 e^3+3 a c d e^2 x+3 c^2 d^3 x\right )+b^2 c e \left (5 a e^2-9 c d^2+6 c d e x\right )+6 b c^2 \left (a e^2 (d-e x)+c d^2 (d-3 e x)\right )+3 b^3 c d e^2+b^4 \left (-e^3\right )}{c^2 \left (b^2-4 a c\right )^2 (a+x (b+c x))}+\frac{2 c \left (a^2 e^3-3 a c d e (d+e x)+c^2 d^3 x\right )+b^2 e^2 (3 c d x-a e)+b c \left (3 a e^2 (d+e x)+c d^2 (d-3 e x)\right )-b^3 e^3 x}{c^2 \left (4 a c-b^2\right ) (a+x (b+c x))^2}+\frac{12 (2 c d-b e) \left (e (a e-b d)+c d^2\right ) \tan ^{-1}\left (\frac{b+2 c x}{\sqrt{4 a c-b^2}}\right )}{\left (4 a c-b^2\right )^{5/2}}\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^3/(a + b*x + c*x^2)^3,x]

[Out]

((3*b^3*c*d*e^2 - b^4*e^3 + b^2*c*e*(-9*c*d^2 + 5*a*e^2 + 6*c*d*e*x) + 4*c^2*(-4*a^2*e^3 + 3*c^2*d^3*x + 3*a*c
*d*e^2*x) + 6*b*c^2*(c*d^2*(d - 3*e*x) + a*e^2*(d - e*x)))/(c^2*(b^2 - 4*a*c)^2*(a + x*(b + c*x))) + (-(b^3*e^
3*x) + b^2*e^2*(-(a*e) + 3*c*d*x) + 2*c*(a^2*e^3 + c^2*d^3*x - 3*a*c*d*e*(d + e*x)) + b*c*(c*d^2*(d - 3*e*x) +
3*a*e^2*(d + e*x)))/(c^2*(-b^2 + 4*a*c)*(a + x*(b + c*x))^2) + (12*(2*c*d - b*e)*(c*d^2 + e*(-(b*d) + a*e))*A
rcTan[(b + 2*c*x)/Sqrt[-b^2 + 4*a*c]])/(-b^2 + 4*a*c)^(5/2))/2

________________________________________________________________________________________

Maple [B]  time = 0.16, size = 695, normalized size = 4.4 \begin{align*}{\frac{1}{ \left ( c{x}^{2}+bx+a \right ) ^{2}} \left ( -3\,{\frac{c \left ( ab{e}^{3}-2\,ad{e}^{2}c-{b}^{2}d{e}^{2}+3\,bc{d}^{2}e-2\,{c}^{2}{d}^{3} \right ){x}^{3}}{16\,{a}^{2}{c}^{2}-8\,ac{b}^{2}+{b}^{4}}}-{\frac{ \left ( 16\,{a}^{2}{c}^{2}{e}^{3}+a{b}^{2}c{e}^{3}-18\,ab{c}^{2}d{e}^{2}+{b}^{4}{e}^{3}-9\,{b}^{3}cd{e}^{2}+27\,{b}^{2}{c}^{2}{d}^{2}e-18\,b{c}^{3}{d}^{3} \right ){x}^{2}}{2\,c \left ( 16\,{a}^{2}{c}^{2}-8\,ac{b}^{2}+{b}^{4} \right ) }}-{\frac{ \left ( 5\,{a}^{2}bc{e}^{3}+6\,{a}^{2}{c}^{2}d{e}^{2}+a{b}^{3}{e}^{3}-15\,a{b}^{2}cd{e}^{2}+15\,ab{c}^{2}{d}^{2}e-10\,a{c}^{3}{d}^{3}+3\,{b}^{3}c{d}^{2}e-2\,{b}^{2}{c}^{2}{d}^{3} \right ) x}{c \left ( 16\,{a}^{2}{c}^{2}-8\,ac{b}^{2}+{b}^{4} \right ) }}-{\frac{8\,{a}^{3}c{e}^{3}+{a}^{2}{b}^{2}{e}^{3}-18\,{a}^{2}bcd{e}^{2}+24\,{a}^{2}{c}^{2}{d}^{2}e+3\,a{b}^{2}c{d}^{2}e-10\,ab{c}^{2}{d}^{3}+{b}^{3}c{d}^{3}}{2\,c \left ( 16\,{a}^{2}{c}^{2}-8\,ac{b}^{2}+{b}^{4} \right ) }} \right ) }-6\,{\frac{ab{e}^{3}}{ \left ( 16\,{a}^{2}{c}^{2}-8\,ac{b}^{2}+{b}^{4} \right ) \sqrt{4\,ac-{b}^{2}}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) }+12\,{\frac{ad{e}^{2}c}{ \left ( 16\,{a}^{2}{c}^{2}-8\,ac{b}^{2}+{b}^{4} \right ) \sqrt{4\,ac-{b}^{2}}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) }+6\,{\frac{{b}^{2}d{e}^{2}}{ \left ( 16\,{a}^{2}{c}^{2}-8\,ac{b}^{2}+{b}^{4} \right ) \sqrt{4\,ac-{b}^{2}}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) }-18\,{\frac{bc{d}^{2}e}{ \left ( 16\,{a}^{2}{c}^{2}-8\,ac{b}^{2}+{b}^{4} \right ) \sqrt{4\,ac-{b}^{2}}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) }+12\,{\frac{{c}^{2}{d}^{3}}{ \left ( 16\,{a}^{2}{c}^{2}-8\,ac{b}^{2}+{b}^{4} \right ) \sqrt{4\,ac-{b}^{2}}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3/(c*x^2+b*x+a)^3,x)

[Out]

(-3*c*(a*b*e^3-2*a*c*d*e^2-b^2*d*e^2+3*b*c*d^2*e-2*c^2*d^3)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3-1/2*(16*a^2*c^2*e^3
+a*b^2*c*e^3-18*a*b*c^2*d*e^2+b^4*e^3-9*b^3*c*d*e^2+27*b^2*c^2*d^2*e-18*b*c^3*d^3)/c/(16*a^2*c^2-8*a*b^2*c+b^4
)*x^2-1/c*(5*a^2*b*c*e^3+6*a^2*c^2*d*e^2+a*b^3*e^3-15*a*b^2*c*d*e^2+15*a*b*c^2*d^2*e-10*a*c^3*d^3+3*b^3*c*d^2*
e-2*b^2*c^2*d^3)/(16*a^2*c^2-8*a*b^2*c+b^4)*x-1/2/c*(8*a^3*c*e^3+a^2*b^2*e^3-18*a^2*b*c*d*e^2+24*a^2*c^2*d^2*e
+3*a*b^2*c*d^2*e-10*a*b*c^2*d^3+b^3*c*d^3)/(16*a^2*c^2-8*a*b^2*c+b^4))/(c*x^2+b*x+a)^2-6/(16*a^2*c^2-8*a*b^2*c
+b^4)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2))*a*b*e^3+12/(16*a^2*c^2-8*a*b^2*c+b^4)/(4*a*c-b^2)^
(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2))*a*d*e^2*c+6/(16*a^2*c^2-8*a*b^2*c+b^4)/(4*a*c-b^2)^(1/2)*arctan((2*c
*x+b)/(4*a*c-b^2)^(1/2))*b^2*d*e^2-18/(16*a^2*c^2-8*a*b^2*c+b^4)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2
)^(1/2))*b*c*d^2*e+12/(16*a^2*c^2-8*a*b^2*c+b^4)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2))*c^2*d^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(c*x^2+b*x+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.22842, size = 4259, normalized size = 26.96 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(c*x^2+b*x+a)^3,x, algorithm="fricas")

[Out]

[-1/2*((b^5*c - 14*a*b^3*c^2 + 40*a^2*b*c^3)*d^3 + 3*(a*b^4*c + 4*a^2*b^2*c^2 - 32*a^3*c^3)*d^2*e - 18*(a^2*b^
3*c - 4*a^3*b*c^2)*d*e^2 + (a^2*b^4 + 4*a^3*b^2*c - 32*a^4*c^2)*e^3 - 6*(2*(b^2*c^4 - 4*a*c^5)*d^3 - 3*(b^3*c^
3 - 4*a*b*c^4)*d^2*e + (b^4*c^2 - 2*a*b^2*c^3 - 8*a^2*c^4)*d*e^2 - (a*b^3*c^2 - 4*a^2*b*c^3)*e^3)*x^3 - (18*(b
^3*c^3 - 4*a*b*c^4)*d^3 - 27*(b^4*c^2 - 4*a*b^2*c^3)*d^2*e + 9*(b^5*c - 2*a*b^3*c^2 - 8*a^2*b*c^3)*d*e^2 - (b^
6 - 3*a*b^4*c + 12*a^2*b^2*c^2 - 64*a^3*c^3)*e^3)*x^2 + 6*(2*a^2*c^3*d^3 - 3*a^2*b*c^2*d^2*e - a^3*b*c*e^3 + (
2*c^5*d^3 - 3*b*c^4*d^2*e - a*b*c^3*e^3 + (b^2*c^3 + 2*a*c^4)*d*e^2)*x^4 + (a^2*b^2*c + 2*a^3*c^2)*d*e^2 + 2*(
2*b*c^4*d^3 - 3*b^2*c^3*d^2*e - a*b^2*c^2*e^3 + (b^3*c^2 + 2*a*b*c^3)*d*e^2)*x^3 + (2*(b^2*c^3 + 2*a*c^4)*d^3
- 3*(b^3*c^2 + 2*a*b*c^3)*d^2*e + (b^4*c + 4*a*b^2*c^2 + 4*a^2*c^3)*d*e^2 - (a*b^3*c + 2*a^2*b*c^2)*e^3)*x^2 +
2*(2*a*b*c^3*d^3 - 3*a*b^2*c^2*d^2*e - a^2*b^2*c*e^3 + (a*b^3*c + 2*a^2*b*c^2)*d*e^2)*x)*sqrt(b^2 - 4*a*c)*lo
g((2*c^2*x^2 + 2*b*c*x + b^2 - 2*a*c + sqrt(b^2 - 4*a*c)*(2*c*x + b))/(c*x^2 + b*x + a)) - 2*(2*(b^4*c^2 + a*b
^2*c^3 - 20*a^2*c^4)*d^3 - 3*(b^5*c + a*b^3*c^2 - 20*a^2*b*c^3)*d^2*e + 3*(5*a*b^4*c - 22*a^2*b^2*c^2 + 8*a^3*
c^3)*d*e^2 - (a*b^5 + a^2*b^3*c - 20*a^3*b*c^2)*e^3)*x)/(a^2*b^6*c - 12*a^3*b^4*c^2 + 48*a^4*b^2*c^3 - 64*a^5*
c^4 + (b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*x^4 + 2*(b^7*c^2 - 12*a*b^5*c^3 + 48*a^2*b^3*c^4
- 64*a^3*b*c^5)*x^3 + (b^8*c - 10*a*b^6*c^2 + 24*a^2*b^4*c^3 + 32*a^3*b^2*c^4 - 128*a^4*c^5)*x^2 + 2*(a*b^7*c
- 12*a^2*b^5*c^2 + 48*a^3*b^3*c^3 - 64*a^4*b*c^4)*x), -1/2*((b^5*c - 14*a*b^3*c^2 + 40*a^2*b*c^3)*d^3 + 3*(a*b
^4*c + 4*a^2*b^2*c^2 - 32*a^3*c^3)*d^2*e - 18*(a^2*b^3*c - 4*a^3*b*c^2)*d*e^2 + (a^2*b^4 + 4*a^3*b^2*c - 32*a^
4*c^2)*e^3 - 6*(2*(b^2*c^4 - 4*a*c^5)*d^3 - 3*(b^3*c^3 - 4*a*b*c^4)*d^2*e + (b^4*c^2 - 2*a*b^2*c^3 - 8*a^2*c^4
)*d*e^2 - (a*b^3*c^2 - 4*a^2*b*c^3)*e^3)*x^3 - (18*(b^3*c^3 - 4*a*b*c^4)*d^3 - 27*(b^4*c^2 - 4*a*b^2*c^3)*d^2*
e + 9*(b^5*c - 2*a*b^3*c^2 - 8*a^2*b*c^3)*d*e^2 - (b^6 - 3*a*b^4*c + 12*a^2*b^2*c^2 - 64*a^3*c^3)*e^3)*x^2 + 1
2*(2*a^2*c^3*d^3 - 3*a^2*b*c^2*d^2*e - a^3*b*c*e^3 + (2*c^5*d^3 - 3*b*c^4*d^2*e - a*b*c^3*e^3 + (b^2*c^3 + 2*a
*c^4)*d*e^2)*x^4 + (a^2*b^2*c + 2*a^3*c^2)*d*e^2 + 2*(2*b*c^4*d^3 - 3*b^2*c^3*d^2*e - a*b^2*c^2*e^3 + (b^3*c^2
+ 2*a*b*c^3)*d*e^2)*x^3 + (2*(b^2*c^3 + 2*a*c^4)*d^3 - 3*(b^3*c^2 + 2*a*b*c^3)*d^2*e + (b^4*c + 4*a*b^2*c^2 +
4*a^2*c^3)*d*e^2 - (a*b^3*c + 2*a^2*b*c^2)*e^3)*x^2 + 2*(2*a*b*c^3*d^3 - 3*a*b^2*c^2*d^2*e - a^2*b^2*c*e^3 +
(a*b^3*c + 2*a^2*b*c^2)*d*e^2)*x)*sqrt(-b^2 + 4*a*c)*arctan(-sqrt(-b^2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c)) - 2
*(2*(b^4*c^2 + a*b^2*c^3 - 20*a^2*c^4)*d^3 - 3*(b^5*c + a*b^3*c^2 - 20*a^2*b*c^3)*d^2*e + 3*(5*a*b^4*c - 22*a^
2*b^2*c^2 + 8*a^3*c^3)*d*e^2 - (a*b^5 + a^2*b^3*c - 20*a^3*b*c^2)*e^3)*x)/(a^2*b^6*c - 12*a^3*b^4*c^2 + 48*a^4
*b^2*c^3 - 64*a^5*c^4 + (b^6*c^3 - 12*a*b^4*c^4 + 48*a^2*b^2*c^5 - 64*a^3*c^6)*x^4 + 2*(b^7*c^2 - 12*a*b^5*c^3
+ 48*a^2*b^3*c^4 - 64*a^3*b*c^5)*x^3 + (b^8*c - 10*a*b^6*c^2 + 24*a^2*b^4*c^3 + 32*a^3*b^2*c^4 - 128*a^4*c^5)
*x^2 + 2*(a*b^7*c - 12*a^2*b^5*c^2 + 48*a^3*b^3*c^3 - 64*a^4*b*c^4)*x)]

________________________________________________________________________________________

Sympy [B]  time = 10.7488, size = 1180, normalized size = 7.47 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3/(c*x**2+b*x+a)**3,x)

[Out]

3*sqrt(-1/(4*a*c - b**2)**5)*(b*e - 2*c*d)*(a*e**2 - b*d*e + c*d**2)*log(x + (-192*a**3*c**3*sqrt(-1/(4*a*c -
b**2)**5)*(b*e - 2*c*d)*(a*e**2 - b*d*e + c*d**2) + 144*a**2*b**2*c**2*sqrt(-1/(4*a*c - b**2)**5)*(b*e - 2*c*d
)*(a*e**2 - b*d*e + c*d**2) - 36*a*b**4*c*sqrt(-1/(4*a*c - b**2)**5)*(b*e - 2*c*d)*(a*e**2 - b*d*e + c*d**2) +
3*a*b**2*e**3 - 6*a*b*c*d*e**2 + 3*b**6*sqrt(-1/(4*a*c - b**2)**5)*(b*e - 2*c*d)*(a*e**2 - b*d*e + c*d**2) -
3*b**3*d*e**2 + 9*b**2*c*d**2*e - 6*b*c**2*d**3)/(6*a*b*c*e**3 - 12*a*c**2*d*e**2 - 6*b**2*c*d*e**2 + 18*b*c**
2*d**2*e - 12*c**3*d**3)) - 3*sqrt(-1/(4*a*c - b**2)**5)*(b*e - 2*c*d)*(a*e**2 - b*d*e + c*d**2)*log(x + (192*
a**3*c**3*sqrt(-1/(4*a*c - b**2)**5)*(b*e - 2*c*d)*(a*e**2 - b*d*e + c*d**2) - 144*a**2*b**2*c**2*sqrt(-1/(4*a
*c - b**2)**5)*(b*e - 2*c*d)*(a*e**2 - b*d*e + c*d**2) + 36*a*b**4*c*sqrt(-1/(4*a*c - b**2)**5)*(b*e - 2*c*d)*
(a*e**2 - b*d*e + c*d**2) + 3*a*b**2*e**3 - 6*a*b*c*d*e**2 - 3*b**6*sqrt(-1/(4*a*c - b**2)**5)*(b*e - 2*c*d)*(
a*e**2 - b*d*e + c*d**2) - 3*b**3*d*e**2 + 9*b**2*c*d**2*e - 6*b*c**2*d**3)/(6*a*b*c*e**3 - 12*a*c**2*d*e**2 -
6*b**2*c*d*e**2 + 18*b*c**2*d**2*e - 12*c**3*d**3)) - (8*a**3*c*e**3 + a**2*b**2*e**3 - 18*a**2*b*c*d*e**2 +
24*a**2*c**2*d**2*e + 3*a*b**2*c*d**2*e - 10*a*b*c**2*d**3 + b**3*c*d**3 + x**3*(6*a*b*c**2*e**3 - 12*a*c**3*d
*e**2 - 6*b**2*c**2*d*e**2 + 18*b*c**3*d**2*e - 12*c**4*d**3) + x**2*(16*a**2*c**2*e**3 + a*b**2*c*e**3 - 18*a
*b*c**2*d*e**2 + b**4*e**3 - 9*b**3*c*d*e**2 + 27*b**2*c**2*d**2*e - 18*b*c**3*d**3) + x*(10*a**2*b*c*e**3 + 1
2*a**2*c**2*d*e**2 + 2*a*b**3*e**3 - 30*a*b**2*c*d*e**2 + 30*a*b*c**2*d**2*e - 20*a*c**3*d**3 + 6*b**3*c*d**2*
e - 4*b**2*c**2*d**3))/(32*a**4*c**3 - 16*a**3*b**2*c**2 + 2*a**2*b**4*c + x**4*(32*a**2*c**5 - 16*a*b**2*c**4
+ 2*b**4*c**3) + x**3*(64*a**2*b*c**4 - 32*a*b**3*c**3 + 4*b**5*c**2) + x**2*(64*a**3*c**4 - 12*a*b**4*c**2 +
2*b**6*c) + x*(64*a**3*b*c**3 - 32*a**2*b**3*c**2 + 4*a*b**5*c))

________________________________________________________________________________________

Giac [B]  time = 1.19454, size = 602, normalized size = 3.81 \begin{align*} \frac{6 \,{\left (2 \, c^{2} d^{3} - 3 \, b c d^{2} e + b^{2} d e^{2} + 2 \, a c d e^{2} - a b e^{3}\right )} \arctan \left (\frac{2 \, c x + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt{-b^{2} + 4 \, a c}} + \frac{12 \, c^{4} d^{3} x^{3} - 18 \, b c^{3} d^{2} x^{3} e + 18 \, b c^{3} d^{3} x^{2} + 6 \, b^{2} c^{2} d x^{3} e^{2} + 12 \, a c^{3} d x^{3} e^{2} - 27 \, b^{2} c^{2} d^{2} x^{2} e + 4 \, b^{2} c^{2} d^{3} x + 20 \, a c^{3} d^{3} x - 6 \, a b c^{2} x^{3} e^{3} + 9 \, b^{3} c d x^{2} e^{2} + 18 \, a b c^{2} d x^{2} e^{2} - 6 \, b^{3} c d^{2} x e - 30 \, a b c^{2} d^{2} x e - b^{3} c d^{3} + 10 \, a b c^{2} d^{3} - b^{4} x^{2} e^{3} - a b^{2} c x^{2} e^{3} - 16 \, a^{2} c^{2} x^{2} e^{3} + 30 \, a b^{2} c d x e^{2} - 12 \, a^{2} c^{2} d x e^{2} - 3 \, a b^{2} c d^{2} e - 24 \, a^{2} c^{2} d^{2} e - 2 \, a b^{3} x e^{3} - 10 \, a^{2} b c x e^{3} + 18 \, a^{2} b c d e^{2} - a^{2} b^{2} e^{3} - 8 \, a^{3} c e^{3}}{2 \,{\left (b^{4} c - 8 \, a b^{2} c^{2} + 16 \, a^{2} c^{3}\right )}{\left (c x^{2} + b x + a\right )}^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(c*x^2+b*x+a)^3,x, algorithm="giac")

[Out]

6*(2*c^2*d^3 - 3*b*c*d^2*e + b^2*d*e^2 + 2*a*c*d*e^2 - a*b*e^3)*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/((b^4 -
8*a*b^2*c + 16*a^2*c^2)*sqrt(-b^2 + 4*a*c)) + 1/2*(12*c^4*d^3*x^3 - 18*b*c^3*d^2*x^3*e + 18*b*c^3*d^3*x^2 + 6
*b^2*c^2*d*x^3*e^2 + 12*a*c^3*d*x^3*e^2 - 27*b^2*c^2*d^2*x^2*e + 4*b^2*c^2*d^3*x + 20*a*c^3*d^3*x - 6*a*b*c^2*
x^3*e^3 + 9*b^3*c*d*x^2*e^2 + 18*a*b*c^2*d*x^2*e^2 - 6*b^3*c*d^2*x*e - 30*a*b*c^2*d^2*x*e - b^3*c*d^3 + 10*a*b
*c^2*d^3 - b^4*x^2*e^3 - a*b^2*c*x^2*e^3 - 16*a^2*c^2*x^2*e^3 + 30*a*b^2*c*d*x*e^2 - 12*a^2*c^2*d*x*e^2 - 3*a*
b^2*c*d^2*e - 24*a^2*c^2*d^2*e - 2*a*b^3*x*e^3 - 10*a^2*b*c*x*e^3 + 18*a^2*b*c*d*e^2 - a^2*b^2*e^3 - 8*a^3*c*e
^3)/((b^4*c - 8*a*b^2*c^2 + 16*a^2*c^3)*(c*x^2 + b*x + a)^2)