3.213 $$\int \frac{x}{(9+12 x+4 x^2)^{5/2}} \, dx$$

Optimal. Leaf size=44 $\frac{3}{16 (2 x+3) \left (4 x^2+12 x+9\right )^{3/2}}-\frac{1}{12 \left (4 x^2+12 x+9\right )^{3/2}}$

[Out]

-1/(12*(9 + 12*x + 4*x^2)^(3/2)) + 3/(16*(3 + 2*x)*(9 + 12*x + 4*x^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0090006, antiderivative size = 44, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 16, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.125, Rules used = {640, 607} $\frac{3}{16 (2 x+3) \left (4 x^2+12 x+9\right )^{3/2}}-\frac{1}{12 \left (4 x^2+12 x+9\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[x/(9 + 12*x + 4*x^2)^(5/2),x]

[Out]

-1/(12*(9 + 12*x + 4*x^2)^(3/2)) + 3/(16*(3 + 2*x)*(9 + 12*x + 4*x^2)^(3/2))

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 607

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(a + b*x + c*x^2)^(p + 1))/((2*p + 1)*(b + 2
*c*x)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rubi steps

\begin{align*} \int \frac{x}{\left (9+12 x+4 x^2\right )^{5/2}} \, dx &=-\frac{1}{12 \left (9+12 x+4 x^2\right )^{3/2}}-\frac{3}{2} \int \frac{1}{\left (9+12 x+4 x^2\right )^{5/2}} \, dx\\ &=-\frac{1}{12 \left (9+12 x+4 x^2\right )^{3/2}}+\frac{3}{16 (3+2 x) \left (9+12 x+4 x^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0084795, size = 27, normalized size = 0.61 $\frac{-8 x-3}{48 (2 x+3)^3 \sqrt{(2 x+3)^2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[x/(9 + 12*x + 4*x^2)^(5/2),x]

[Out]

(-3 - 8*x)/(48*(3 + 2*x)^3*Sqrt[(3 + 2*x)^2])

________________________________________________________________________________________

Maple [A]  time = 0.067, size = 22, normalized size = 0.5 \begin{align*} -{\frac{ \left ( 3+2\,x \right ) \left ( 8\,x+3 \right ) }{48} \left ( \left ( 3+2\,x \right ) ^{2} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x/(4*x^2+12*x+9)^(5/2),x)

[Out]

-1/48*(3+2*x)*(8*x+3)/((3+2*x)^2)^(5/2)

________________________________________________________________________________________

Maxima [A]  time = 1.58961, size = 32, normalized size = 0.73 \begin{align*} -\frac{1}{12 \,{\left (4 \, x^{2} + 12 \, x + 9\right )}^{\frac{3}{2}}} + \frac{3}{16 \,{\left (2 \, x + 3\right )}^{4}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(4*x^2+12*x+9)^(5/2),x, algorithm="maxima")

[Out]

-1/12/(4*x^2 + 12*x + 9)^(3/2) + 3/16/(2*x + 3)^4

________________________________________________________________________________________

Fricas [A]  time = 1.68457, size = 78, normalized size = 1.77 \begin{align*} -\frac{8 \, x + 3}{48 \,{\left (16 \, x^{4} + 96 \, x^{3} + 216 \, x^{2} + 216 \, x + 81\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(4*x^2+12*x+9)^(5/2),x, algorithm="fricas")

[Out]

-1/48*(8*x + 3)/(16*x^4 + 96*x^3 + 216*x^2 + 216*x + 81)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\left (\left (2 x + 3\right )^{2}\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(4*x**2+12*x+9)**(5/2),x)

[Out]

Integral(x/((2*x + 3)**2)**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(4*x^2+12*x+9)^(5/2),x, algorithm="giac")

[Out]

sage0*x