### 3.2081 $$\int \frac{1}{\sqrt{d+e x} \sqrt{d^2-e^2 x^2}} \, dx$$

Optimal. Leaf size=52 $-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{\sqrt{2} \sqrt{d} \sqrt{d+e x}}\right )}{\sqrt{d} e}$

[Out]

-((Sqrt[2]*ArcTanh[Sqrt[d^2 - e^2*x^2]/(Sqrt[2]*Sqrt[d]*Sqrt[d + e*x])])/(Sqrt[d]*e))

________________________________________________________________________________________

Rubi [A]  time = 0.0241019, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 26, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.077, Rules used = {661, 208} $-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{\sqrt{2} \sqrt{d} \sqrt{d+e x}}\right )}{\sqrt{d} e}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[d^2 - e^2*x^2]),x]

[Out]

-((Sqrt[2]*ArcTanh[Sqrt[d^2 - e^2*x^2]/(Sqrt[2]*Sqrt[d]*Sqrt[d + e*x])])/(Sqrt[d]*e))

Rule 661

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(2*c*d + e^2*x^2
), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d+e x} \sqrt{d^2-e^2 x^2}} \, dx &=(2 e) \operatorname{Subst}\left (\int \frac{1}{-2 d e^2+e^2 x^2} \, dx,x,\frac{\sqrt{d^2-e^2 x^2}}{\sqrt{d+e x}}\right )\\ &=-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{\sqrt{2} \sqrt{d} \sqrt{d+e x}}\right )}{\sqrt{d} e}\\ \end{align*}

Mathematica [A]  time = 0.0515172, size = 52, normalized size = 1. $-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{d^2-e^2 x^2}}{\sqrt{2} \sqrt{d} \sqrt{d+e x}}\right )}{\sqrt{d} e}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[d^2 - e^2*x^2]),x]

[Out]

-((Sqrt[2]*ArcTanh[Sqrt[d^2 - e^2*x^2]/(Sqrt[2]*Sqrt[d]*Sqrt[d + e*x])])/(Sqrt[d]*e))

________________________________________________________________________________________

Maple [A]  time = 0.164, size = 58, normalized size = 1.1 \begin{align*} -{\frac{\sqrt{2}}{e}\sqrt{-{e}^{2}{x}^{2}+{d}^{2}}{\it Artanh} \left ({\frac{\sqrt{2}}{2}\sqrt{-ex+d}{\frac{1}{\sqrt{d}}}} \right ){\frac{1}{\sqrt{ex+d}}}{\frac{1}{\sqrt{-ex+d}}}{\frac{1}{\sqrt{d}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(-e^2*x^2+d^2)^(1/2),x)

[Out]

-1/(e*x+d)^(1/2)*(-e^2*x^2+d^2)^(1/2)/(-e*x+d)^(1/2)/e*2^(1/2)/d^(1/2)*arctanh(1/2*(-e*x+d)^(1/2)*2^(1/2)/d^(1
/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-e^{2} x^{2} + d^{2}} \sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(-e^2*x^2+d^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-e^2*x^2 + d^2)*sqrt(e*x + d)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.87935, size = 333, normalized size = 6.4 \begin{align*} \left [\frac{\sqrt{2} \log \left (-\frac{e^{2} x^{2} - 2 \, d e x + 2 \, \sqrt{2} \sqrt{-e^{2} x^{2} + d^{2}} \sqrt{e x + d} \sqrt{d} - 3 \, d^{2}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right )}{2 \, \sqrt{d} e}, -\frac{\sqrt{2} \sqrt{-\frac{1}{d}} \arctan \left (\frac{\sqrt{2} \sqrt{-e^{2} x^{2} + d^{2}} \sqrt{e x + d} d \sqrt{-\frac{1}{d}}}{e^{2} x^{2} - d^{2}}\right )}{e}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(-e^2*x^2+d^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(2)*log(-(e^2*x^2 - 2*d*e*x + 2*sqrt(2)*sqrt(-e^2*x^2 + d^2)*sqrt(e*x + d)*sqrt(d) - 3*d^2)/(e^2*x^2
+ 2*d*e*x + d^2))/(sqrt(d)*e), -sqrt(2)*sqrt(-1/d)*arctan(sqrt(2)*sqrt(-e^2*x^2 + d^2)*sqrt(e*x + d)*d*sqrt(-1
/d)/(e^2*x^2 - d^2))/e]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{- \left (- d + e x\right ) \left (d + e x\right )} \sqrt{d + e x}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(-e**2*x**2+d**2)**(1/2),x)

[Out]

Integral(1/(sqrt(-(-d + e*x)*(d + e*x))*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-e^{2} x^{2} + d^{2}} \sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(-e^2*x^2+d^2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-e^2*x^2 + d^2)*sqrt(e*x + d)), x)