### 3.2073 $$\int \frac{(d+e x)^{7/2}}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx$$

Optimal. Leaf size=107 $\frac{4 (d+e x)^{3/2} \left (c d^2-a e^2\right )}{3 c^2 d^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}-\frac{2 (d+e x)^{5/2}}{c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}$

[Out]

(4*(c*d^2 - a*e^2)*(d + e*x)^(3/2))/(3*c^2*d^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) - (2*(d + e*x)^(
5/2))/(c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0650133, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 39, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.051, Rules used = {656, 648} $\frac{4 (d+e x)^{3/2} \left (c d^2-a e^2\right )}{3 c^2 d^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}-\frac{2 (d+e x)^{5/2}}{c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(7/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(4*(c*d^2 - a*e^2)*(d + e*x)^(3/2))/(3*c^2*d^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) - (2*(d + e*x)^(
5/2))/(c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))

Rule 656

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[(Simplify[m + p]*(2*c*d - b*e))/(c*(m + 2*p + 1)), In
t[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && E
qQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && IGtQ[Simplify[m + p], 0]

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{7/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac{2 (d+e x)^{5/2}}{c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{\left (2 \left (2 c d^2 e-e \left (c d^2+a e^2\right )\right )\right ) \int \frac{(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx}{c d e}\\ &=\frac{4 \left (c d^2-a e^2\right ) (d+e x)^{3/2}}{3 c^2 d^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{2 (d+e x)^{5/2}}{c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0455718, size = 53, normalized size = 0.5 $-\frac{2 (d+e x)^{3/2} \left (2 a e^2+c d (d+3 e x)\right )}{3 c^2 d^2 ((d+e x) (a e+c d x))^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^(7/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2)*(2*a*e^2 + c*d*(d + 3*e*x)))/(3*c^2*d^2*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 68, normalized size = 0.6 \begin{align*} -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( 3\,cdex+2\,a{e}^{2}+c{d}^{2} \right ) }{3\,{c}^{2}{d}^{2}} \left ( ex+d \right ) ^{{\frac{5}{2}}} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{-{\frac{5}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(7/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

-2/3*(c*d*x+a*e)*(3*c*d*e*x+2*a*e^2+c*d^2)*(e*x+d)^(5/2)/c^2/d^2/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(5/2)

________________________________________________________________________________________

Maxima [A]  time = 1.11136, size = 68, normalized size = 0.64 \begin{align*} -\frac{2 \,{\left (3 \, c d e x + c d^{2} + 2 \, a e^{2}\right )}}{3 \,{\left (c^{3} d^{3} x + a c^{2} d^{2} e\right )} \sqrt{c d x + a e}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

-2/3*(3*c*d*e*x + c*d^2 + 2*a*e^2)/((c^3*d^3*x + a*c^2*d^2*e)*sqrt(c*d*x + a*e))

________________________________________________________________________________________

Fricas [A]  time = 2.07758, size = 270, normalized size = 2.52 \begin{align*} -\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (3 \, c d e x + c d^{2} + 2 \, a e^{2}\right )} \sqrt{e x + d}}{3 \,{\left (c^{4} d^{4} e x^{3} + a^{2} c^{2} d^{3} e^{2} +{\left (c^{4} d^{5} + 2 \, a c^{3} d^{3} e^{2}\right )} x^{2} +{\left (2 \, a c^{3} d^{4} e + a^{2} c^{2} d^{2} e^{3}\right )} x\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

-2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(3*c*d*e*x + c*d^2 + 2*a*e^2)*sqrt(e*x + d)/(c^4*d^4*e*x^3 +
a^2*c^2*d^3*e^2 + (c^4*d^5 + 2*a*c^3*d^3*e^2)*x^2 + (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(7/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(7/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x