### 3.2067 $$\int \frac{(d+e x)^{3/2}}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx$$

Optimal. Leaf size=46 $-\frac{2 \sqrt{d+e x}}{c d \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}$

[Out]

(-2*Sqrt[d + e*x])/(c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0205415, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 39, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.026, Rules used = {648} $-\frac{2 \sqrt{d+e x}}{c d \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(3/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*Sqrt[d + e*x])/(c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac{2 \sqrt{d+e x}}{c d \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0131777, size = 35, normalized size = 0.76 $-\frac{2 \sqrt{d+e x}}{c d \sqrt{(d+e x) (a e+c d x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^(3/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*Sqrt[d + e*x])/(c*d*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.042, size = 50, normalized size = 1.1 \begin{align*} -2\,{\frac{ \left ( cdx+ae \right ) \left ( ex+d \right ) ^{3/2}}{cd \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{3/2}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

-2*(c*d*x+a*e)*(e*x+d)^(3/2)/d/c/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)

________________________________________________________________________________________

Maxima [A]  time = 1.09472, size = 24, normalized size = 0.52 \begin{align*} -\frac{2}{\sqrt{c d x + a e} c d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

-2/(sqrt(c*d*x + a*e)*c*d)

________________________________________________________________________________________

Fricas [A]  time = 2.1129, size = 157, normalized size = 3.41 \begin{align*} -\frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d}}{c^{2} d^{2} e x^{2} + a c d^{2} e +{\left (c^{2} d^{3} + a c d e^{2}\right )} x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

-2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^2
)*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x\right )^{\frac{3}{2}}}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral((d + e*x)**(3/2)/((d + e*x)*(a*e + c*d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x