### 3.2061 $$\int \frac{1}{\sqrt{d+e x} \sqrt{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx$$

Optimal. Leaf size=84 $\frac{2 \tan ^{-1}\left (\frac{\sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d^2-a e^2}}\right )}{\sqrt{e} \sqrt{c d^2-a e^2}}$

[Out]

(2*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/(Sqrt[e]
*Sqrt[c*d^2 - a*e^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0411245, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 39, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.051, Rules used = {660, 205} $\frac{2 \tan ^{-1}\left (\frac{\sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d^2-a e^2}}\right )}{\sqrt{e} \sqrt{c d^2-a e^2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/(Sqrt[e]
*Sqrt[c*d^2 - a*e^2])

Rule 660

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{d+e x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=(2 e) \operatorname{Subst}\left (\int \frac{1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}}\right )\\ &=\frac{2 \tan ^{-1}\left (\frac{\sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{c d^2-a e^2} \sqrt{d+e x}}\right )}{\sqrt{e} \sqrt{c d^2-a e^2}}\\ \end{align*}

Mathematica [A]  time = 0.0351118, size = 97, normalized size = 1.15 $\frac{2 \sqrt{d+e x} \sqrt{a e+c d x} \tan ^{-1}\left (\frac{\sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d^2-a e^2}}\right )}{\sqrt{e} \sqrt{c d^2-a e^2} \sqrt{(d+e x) (a e+c d x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTan[(Sqrt[e]*Sqrt[a*e + c*d*x])/Sqrt[c*d^2 - a*e^2]])/(Sqrt[e]*Sqrt[c*d^
2 - a*e^2]*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.247, size = 91, normalized size = 1.1 \begin{align*} -2\,{\frac{\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}}{\sqrt{ex+d}\sqrt{cdx+ae}\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}}{\it Artanh} \left ({\frac{e\sqrt{cdx+ae}}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}}} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

-2/(e*x+d)^(1/2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)/(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*arctanh(e*(
c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.2922, size = 500, normalized size = 5.95 \begin{align*} \left [-\frac{\sqrt{-c d^{2} e + a e^{3}} \log \left (-\frac{c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} - 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{-c d^{2} e + a e^{3}} \sqrt{e x + d}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right )}{c d^{2} e - a e^{3}}, -\frac{2 \, \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{c d^{2} e - a e^{3}} \sqrt{e x + d}}{c d e^{2} x^{2} + a d e^{2} +{\left (c d^{2} e + a e^{3}\right )} x}\right )}{\sqrt{c d^{2} e - a e^{3}}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[-sqrt(-c*d^2*e + a*e^3)*log(-(c*d*e^2*x^2 + 2*a*e^3*x - c*d^3 + 2*a*d*e^2 - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2
+ a*e^2)*x)*sqrt(-c*d^2*e + a*e^3)*sqrt(e*x + d))/(e^2*x^2 + 2*d*e*x + d^2))/(c*d^2*e - a*e^3), -2*arctan(sqr
t(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d^2*e - a*e^3)*sqrt(e*x + d)/(c*d*e^2*x^2 + a*d*e^2 + (c*d^2*e
+ a*e^3)*x))/sqrt(c*d^2*e - a*e^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \sqrt{d + e x}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(sqrt((d + e*x)*(a*e + c*d*x))*sqrt(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Timed out