### 3.2040 $$\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2}} \, dx$$

Optimal. Leaf size=48 $\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 c d (d+e x)^{5/2}}$

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(5*c*d*(d + e*x)^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0245674, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 39, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.026, Rules used = {648} $\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 c d (d+e x)^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(3/2),x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(5*c*d*(d + e*x)^(5/2))

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{5 c d (d+e x)^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.033448, size = 37, normalized size = 0.77 $\frac{2 ((d+e x) (a e+c d x))^{5/2}}{5 c d (d+e x)^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(3/2),x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(5/2))/(5*c*d*(d + e*x)^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.042, size = 50, normalized size = 1. \begin{align*}{\frac{2\,cdx+2\,ae}{5\,cd} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{{\frac{3}{2}}} \left ( ex+d \right ) ^{-{\frac{3}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x)

[Out]

2/5*(c*d*x+a*e)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)/d/c/(e*x+d)^(3/2)

________________________________________________________________________________________

Maxima [A]  time = 1.03958, size = 58, normalized size = 1.21 \begin{align*} \frac{2 \,{\left (c^{2} d^{2} x^{2} + 2 \, a c d e x + a^{2} e^{2}\right )} \sqrt{c d x + a e}}{5 \, c d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

2/5*(c^2*d^2*x^2 + 2*a*c*d*e*x + a^2*e^2)*sqrt(c*d*x + a*e)/(c*d)

________________________________________________________________________________________

Fricas [A]  time = 1.84927, size = 161, normalized size = 3.35 \begin{align*} \frac{2 \,{\left (c^{2} d^{2} x^{2} + 2 \, a c d e x + a^{2} e^{2}\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d}}{5 \,{\left (c d e x + c d^{2}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

2/5*(c^2*d^2*x^2 + 2*a*c*d*e*x + a^2*e^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c*d*e*x +
c*d^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac{3}{2}}}{\left (d + e x\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/(d + e*x)**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

Timed out