3.202 $$\int \frac{x^2}{(a^2+2 a b x+b^2 x^2)^{5/2}} \, dx$$

Optimal. Leaf size=107 $-\frac{a^2}{4 b^3 (a+b x)^3 \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{2 a}{3 b^3 (a+b x)^2 \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 b^3 (a+b x) \sqrt{a^2+2 a b x+b^2 x^2}}$

[Out]

-a^2/(4*b^3*(a + b*x)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (2*a)/(3*b^3*(a + b*x)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2
]) - 1/(2*b^3*(a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0478855, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.083, Rules used = {646, 43} $-\frac{a^2}{4 b^3 (a+b x)^3 \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{2 a}{3 b^3 (a+b x)^2 \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 b^3 (a+b x) \sqrt{a^2+2 a b x+b^2 x^2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[x^2/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

-a^2/(4*b^3*(a + b*x)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (2*a)/(3*b^3*(a + b*x)^2*Sqrt[a^2 + 2*a*b*x + b^2*x^2
]) - 1/(2*b^3*(a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{x^2}{\left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx &=\frac{\left (b^4 \left (a b+b^2 x\right )\right ) \int \frac{x^2}{\left (a b+b^2 x\right )^5} \, dx}{\sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{\left (b^4 \left (a b+b^2 x\right )\right ) \int \left (\frac{a^2}{b^7 (a+b x)^5}-\frac{2 a}{b^7 (a+b x)^4}+\frac{1}{b^7 (a+b x)^3}\right ) \, dx}{\sqrt{a^2+2 a b x+b^2 x^2}}\\ &=-\frac{a^2}{4 b^3 (a+b x)^3 \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{2 a}{3 b^3 (a+b x)^2 \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 b^3 (a+b x) \sqrt{a^2+2 a b x+b^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0135012, size = 44, normalized size = 0.41 $\frac{-a^2-4 a b x-6 b^2 x^2}{12 b^3 (a+b x)^3 \sqrt{(a+b x)^2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[x^2/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(-a^2 - 4*a*b*x - 6*b^2*x^2)/(12*b^3*(a + b*x)^3*Sqrt[(a + b*x)^2])

________________________________________________________________________________________

Maple [A]  time = 0.177, size = 37, normalized size = 0.4 \begin{align*} -{\frac{ \left ( bx+a \right ) \left ( 6\,{b}^{2}{x}^{2}+4\,abx+{a}^{2} \right ) }{12\,{b}^{3}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b^2*x^2+2*a*b*x+a^2)^(5/2),x)

[Out]

-1/12*(b*x+a)*(6*b^2*x^2+4*a*b*x+a^2)/b^3/((b*x+a)^2)^(5/2)

________________________________________________________________________________________

Maxima [A]  time = 1.18181, size = 77, normalized size = 0.72 \begin{align*} -\frac{a^{2} b^{2}}{4 \,{\left (b^{2}\right )}^{\frac{9}{2}}{\left (x + \frac{a}{b}\right )}^{4}} + \frac{2 \, a b}{3 \,{\left (b^{2}\right )}^{\frac{7}{2}}{\left (x + \frac{a}{b}\right )}^{3}} - \frac{1}{2 \,{\left (b^{2}\right )}^{\frac{5}{2}}{\left (x + \frac{a}{b}\right )}^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="maxima")

[Out]

-1/4*a^2*b^2/((b^2)^(9/2)*(x + a/b)^4) + 2/3*a*b/((b^2)^(7/2)*(x + a/b)^3) - 1/2/((b^2)^(5/2)*(x + a/b)^2)

________________________________________________________________________________________

Fricas [A]  time = 1.59905, size = 134, normalized size = 1.25 \begin{align*} -\frac{6 \, b^{2} x^{2} + 4 \, a b x + a^{2}}{12 \,{\left (b^{7} x^{4} + 4 \, a b^{6} x^{3} + 6 \, a^{2} b^{5} x^{2} + 4 \, a^{3} b^{4} x + a^{4} b^{3}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="fricas")

[Out]

-1/12*(6*b^2*x^2 + 4*a*b*x + a^2)/(b^7*x^4 + 4*a*b^6*x^3 + 6*a^2*b^5*x^2 + 4*a^3*b^4*x + a^4*b^3)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (\left (a + b x\right )^{2}\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b**2*x**2+2*a*b*x+a**2)**(5/2),x)

[Out]

Integral(x**2/((a + b*x)**2)**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x