### 3.2000 $$\int \frac{(d+e x)^{9/2}}{a d e+(c d^2+a e^2) x+c d e x^2} \, dx$$

Optimal. Leaf size=180 $\frac{2 \sqrt{d+e x} \left (c d^2-a e^2\right )^3}{c^4 d^4}+\frac{2 (d+e x)^{3/2} \left (c d^2-a e^2\right )^2}{3 c^3 d^3}+\frac{2 (d+e x)^{5/2} \left (c d^2-a e^2\right )}{5 c^2 d^2}-\frac{2 \left (c d^2-a e^2\right )^{7/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{d+e x}}{\sqrt{c d^2-a e^2}}\right )}{c^{9/2} d^{9/2}}+\frac{2 (d+e x)^{7/2}}{7 c d}$

[Out]

(2*(c*d^2 - a*e^2)^3*Sqrt[d + e*x])/(c^4*d^4) + (2*(c*d^2 - a*e^2)^2*(d + e*x)^(3/2))/(3*c^3*d^3) + (2*(c*d^2
- a*e^2)*(d + e*x)^(5/2))/(5*c^2*d^2) + (2*(d + e*x)^(7/2))/(7*c*d) - (2*(c*d^2 - a*e^2)^(7/2)*ArcTanh[(Sqrt[c
]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[c*d^2 - a*e^2]])/(c^(9/2)*d^(9/2))

________________________________________________________________________________________

Rubi [A]  time = 0.237441, antiderivative size = 180, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 37, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.108, Rules used = {626, 50, 63, 208} $\frac{2 \sqrt{d+e x} \left (c d^2-a e^2\right )^3}{c^4 d^4}+\frac{2 (d+e x)^{3/2} \left (c d^2-a e^2\right )^2}{3 c^3 d^3}+\frac{2 (d+e x)^{5/2} \left (c d^2-a e^2\right )}{5 c^2 d^2}-\frac{2 \left (c d^2-a e^2\right )^{7/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{d+e x}}{\sqrt{c d^2-a e^2}}\right )}{c^{9/2} d^{9/2}}+\frac{2 (d+e x)^{7/2}}{7 c d}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^(9/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2),x]

[Out]

(2*(c*d^2 - a*e^2)^3*Sqrt[d + e*x])/(c^4*d^4) + (2*(c*d^2 - a*e^2)^2*(d + e*x)^(3/2))/(3*c^3*d^3) + (2*(c*d^2
- a*e^2)*(d + e*x)^(5/2))/(5*c^2*d^2) + (2*(d + e*x)^(7/2))/(7*c*d) - (2*(c*d^2 - a*e^2)^(7/2)*ArcTanh[(Sqrt[c
]*Sqrt[d]*Sqrt[d + e*x])/Sqrt[c*d^2 - a*e^2]])/(c^(9/2)*d^(9/2))

Rule 626

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c*x)/e)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
IntegerQ[p]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{9/2}}{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx &=\int \frac{(d+e x)^{7/2}}{a e+c d x} \, dx\\ &=\frac{2 (d+e x)^{7/2}}{7 c d}+\frac{\left (c d^2-a e^2\right ) \int \frac{(d+e x)^{5/2}}{a e+c d x} \, dx}{c d}\\ &=\frac{2 \left (c d^2-a e^2\right ) (d+e x)^{5/2}}{5 c^2 d^2}+\frac{2 (d+e x)^{7/2}}{7 c d}+\frac{\left (c d^2-a e^2\right )^2 \int \frac{(d+e x)^{3/2}}{a e+c d x} \, dx}{c^2 d^2}\\ &=\frac{2 \left (c d^2-a e^2\right )^2 (d+e x)^{3/2}}{3 c^3 d^3}+\frac{2 \left (c d^2-a e^2\right ) (d+e x)^{5/2}}{5 c^2 d^2}+\frac{2 (d+e x)^{7/2}}{7 c d}+\frac{\left (c d^2-a e^2\right )^3 \int \frac{\sqrt{d+e x}}{a e+c d x} \, dx}{c^3 d^3}\\ &=\frac{2 \left (c d^2-a e^2\right )^3 \sqrt{d+e x}}{c^4 d^4}+\frac{2 \left (c d^2-a e^2\right )^2 (d+e x)^{3/2}}{3 c^3 d^3}+\frac{2 \left (c d^2-a e^2\right ) (d+e x)^{5/2}}{5 c^2 d^2}+\frac{2 (d+e x)^{7/2}}{7 c d}+\frac{\left (c d^2-a e^2\right )^4 \int \frac{1}{(a e+c d x) \sqrt{d+e x}} \, dx}{c^4 d^4}\\ &=\frac{2 \left (c d^2-a e^2\right )^3 \sqrt{d+e x}}{c^4 d^4}+\frac{2 \left (c d^2-a e^2\right )^2 (d+e x)^{3/2}}{3 c^3 d^3}+\frac{2 \left (c d^2-a e^2\right ) (d+e x)^{5/2}}{5 c^2 d^2}+\frac{2 (d+e x)^{7/2}}{7 c d}+\frac{\left (2 \left (c d^2-a e^2\right )^4\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{c d^2}{e}+a e+\frac{c d x^2}{e}} \, dx,x,\sqrt{d+e x}\right )}{c^4 d^4 e}\\ &=\frac{2 \left (c d^2-a e^2\right )^3 \sqrt{d+e x}}{c^4 d^4}+\frac{2 \left (c d^2-a e^2\right )^2 (d+e x)^{3/2}}{3 c^3 d^3}+\frac{2 \left (c d^2-a e^2\right ) (d+e x)^{5/2}}{5 c^2 d^2}+\frac{2 (d+e x)^{7/2}}{7 c d}-\frac{2 \left (c d^2-a e^2\right )^{7/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{d+e x}}{\sqrt{c d^2-a e^2}}\right )}{c^{9/2} d^{9/2}}\\ \end{align*}

Mathematica [A]  time = 0.289746, size = 175, normalized size = 0.97 $\frac{2 \left (c d^2-a e^2\right ) \left (5 \left (c d^2-a e^2\right ) \left (\sqrt{c} \sqrt{d} \sqrt{d+e x} \left (c d (4 d+e x)-3 a e^2\right )-3 \left (c d^2-a e^2\right )^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{d+e x}}{\sqrt{c d^2-a e^2}}\right )\right )+3 c^{5/2} d^{5/2} (d+e x)^{5/2}\right )}{15 c^{9/2} d^{9/2}}+\frac{2 (d+e x)^{7/2}}{7 c d}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^(9/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2),x]

[Out]

(2*(d + e*x)^(7/2))/(7*c*d) + (2*(c*d^2 - a*e^2)*(3*c^(5/2)*d^(5/2)*(d + e*x)^(5/2) + 5*(c*d^2 - a*e^2)*(Sqrt[
c]*Sqrt[d]*Sqrt[d + e*x]*(-3*a*e^2 + c*d*(4*d + e*x)) - 3*(c*d^2 - a*e^2)^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[
d + e*x])/Sqrt[c*d^2 - a*e^2]])))/(15*c^(9/2)*d^(9/2))

________________________________________________________________________________________

Maple [B]  time = 0.213, size = 455, normalized size = 2.5 \begin{align*}{\frac{2}{7\,cd} \left ( ex+d \right ) ^{{\frac{7}{2}}}}-{\frac{2\,a{e}^{2}}{5\,{c}^{2}{d}^{2}} \left ( ex+d \right ) ^{{\frac{5}{2}}}}+{\frac{2}{5\,c} \left ( ex+d \right ) ^{{\frac{5}{2}}}}+{\frac{2\,{a}^{2}{e}^{4}}{3\,{c}^{3}{d}^{3}} \left ( ex+d \right ) ^{{\frac{3}{2}}}}-{\frac{4\,a{e}^{2}}{3\,{c}^{2}d} \left ( ex+d \right ) ^{{\frac{3}{2}}}}+{\frac{2\,d}{3\,c} \left ( ex+d \right ) ^{{\frac{3}{2}}}}-2\,{\frac{{a}^{3}{e}^{6}\sqrt{ex+d}}{{c}^{4}{d}^{4}}}+6\,{\frac{{a}^{2}{e}^{4}\sqrt{ex+d}}{{c}^{3}{d}^{2}}}-6\,{\frac{a{e}^{2}\sqrt{ex+d}}{{c}^{2}}}+2\,{\frac{{d}^{2}\sqrt{ex+d}}{c}}+2\,{\frac{{a}^{4}{e}^{8}}{{c}^{4}{d}^{4}\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}\arctan \left ({\frac{\sqrt{ex+d}cd}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}} \right ) }-8\,{\frac{{a}^{3}{e}^{6}}{{c}^{3}{d}^{2}\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}\arctan \left ({\frac{\sqrt{ex+d}cd}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}} \right ) }+12\,{\frac{{a}^{2}{e}^{4}}{{c}^{2}\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}\arctan \left ({\frac{\sqrt{ex+d}cd}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}} \right ) }-8\,{\frac{a{d}^{2}{e}^{2}}{c\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}\arctan \left ({\frac{\sqrt{ex+d}cd}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}} \right ) }+2\,{\frac{{d}^{4}}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}\arctan \left ({\frac{\sqrt{ex+d}cd}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) cd}}} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(9/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x)

[Out]

2/7*(e*x+d)^(7/2)/c/d-2/5/c^2/d^2*(e*x+d)^(5/2)*a*e^2+2/5/c*(e*x+d)^(5/2)+2/3/c^3/d^3*(e*x+d)^(3/2)*a^2*e^4-4/
3/c^2/d*(e*x+d)^(3/2)*a*e^2+2/3/c*d*(e*x+d)^(3/2)-2/c^4/d^4*a^3*e^6*(e*x+d)^(1/2)+6/c^3/d^2*a^2*e^4*(e*x+d)^(1
/2)-6/c^2*a*e^2*(e*x+d)^(1/2)+2/c*d^2*(e*x+d)^(1/2)+2/c^4/d^4/((a*e^2-c*d^2)*c*d)^(1/2)*arctan((e*x+d)^(1/2)*c
*d/((a*e^2-c*d^2)*c*d)^(1/2))*a^4*e^8-8/c^3/d^2/((a*e^2-c*d^2)*c*d)^(1/2)*arctan((e*x+d)^(1/2)*c*d/((a*e^2-c*d
^2)*c*d)^(1/2))*a^3*e^6+12/c^2/((a*e^2-c*d^2)*c*d)^(1/2)*arctan((e*x+d)^(1/2)*c*d/((a*e^2-c*d^2)*c*d)^(1/2))*a
^2*e^4-8/c*d^2/((a*e^2-c*d^2)*c*d)^(1/2)*arctan((e*x+d)^(1/2)*c*d/((a*e^2-c*d^2)*c*d)^(1/2))*a*e^2+2*d^4/((a*e
^2-c*d^2)*c*d)^(1/2)*arctan((e*x+d)^(1/2)*c*d/((a*e^2-c*d^2)*c*d)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(9/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.96166, size = 1081, normalized size = 6.01 \begin{align*} \left [\frac{105 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt{\frac{c d^{2} - a e^{2}}{c d}} \log \left (\frac{c d e x + 2 \, c d^{2} - a e^{2} - 2 \, \sqrt{e x + d} c d \sqrt{\frac{c d^{2} - a e^{2}}{c d}}}{c d x + a e}\right ) + 2 \,{\left (15 \, c^{3} d^{3} e^{3} x^{3} + 176 \, c^{3} d^{6} - 406 \, a c^{2} d^{4} e^{2} + 350 \, a^{2} c d^{2} e^{4} - 105 \, a^{3} e^{6} + 3 \,{\left (22 \, c^{3} d^{4} e^{2} - 7 \, a c^{2} d^{2} e^{4}\right )} x^{2} +{\left (122 \, c^{3} d^{5} e - 112 \, a c^{2} d^{3} e^{3} + 35 \, a^{2} c d e^{5}\right )} x\right )} \sqrt{e x + d}}{105 \, c^{4} d^{4}}, -\frac{2 \,{\left (105 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt{-\frac{c d^{2} - a e^{2}}{c d}} \arctan \left (-\frac{\sqrt{e x + d} c d \sqrt{-\frac{c d^{2} - a e^{2}}{c d}}}{c d^{2} - a e^{2}}\right ) -{\left (15 \, c^{3} d^{3} e^{3} x^{3} + 176 \, c^{3} d^{6} - 406 \, a c^{2} d^{4} e^{2} + 350 \, a^{2} c d^{2} e^{4} - 105 \, a^{3} e^{6} + 3 \,{\left (22 \, c^{3} d^{4} e^{2} - 7 \, a c^{2} d^{2} e^{4}\right )} x^{2} +{\left (122 \, c^{3} d^{5} e - 112 \, a c^{2} d^{3} e^{3} + 35 \, a^{2} c d e^{5}\right )} x\right )} \sqrt{e x + d}\right )}}{105 \, c^{4} d^{4}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(9/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="fricas")

[Out]

[1/105*(105*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt((c*d^2 - a*e^2)/(c*d))*log((c*d*e*x +
2*c*d^2 - a*e^2 - 2*sqrt(e*x + d)*c*d*sqrt((c*d^2 - a*e^2)/(c*d)))/(c*d*x + a*e)) + 2*(15*c^3*d^3*e^3*x^3 + 1
76*c^3*d^6 - 406*a*c^2*d^4*e^2 + 350*a^2*c*d^2*e^4 - 105*a^3*e^6 + 3*(22*c^3*d^4*e^2 - 7*a*c^2*d^2*e^4)*x^2 +
(122*c^3*d^5*e - 112*a*c^2*d^3*e^3 + 35*a^2*c*d*e^5)*x)*sqrt(e*x + d))/(c^4*d^4), -2/105*(105*(c^3*d^6 - 3*a*c
^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-(c*d^2 - a*e^2)/(c*d))*arctan(-sqrt(e*x + d)*c*d*sqrt(-(c*d^2 -
a*e^2)/(c*d))/(c*d^2 - a*e^2)) - (15*c^3*d^3*e^3*x^3 + 176*c^3*d^6 - 406*a*c^2*d^4*e^2 + 350*a^2*c*d^2*e^4 - 1
05*a^3*e^6 + 3*(22*c^3*d^4*e^2 - 7*a*c^2*d^2*e^4)*x^2 + (122*c^3*d^5*e - 112*a*c^2*d^3*e^3 + 35*a^2*c*d*e^5)*x
)*sqrt(e*x + d))/(c^4*d^4)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(9/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(9/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2),x, algorithm="giac")

[Out]

Timed out