### 3.1974 $$\int \frac{d+e x}{\sqrt [3]{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx$$

Optimal. Leaf size=1485 $\text{result too large to display}$

[Out]

(3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(2/3))/(4*c*d) + (3*(c*d^2 - a*e^2)*Sqrt[(c*d^2 + a*e^2 + 2*c*d*e*x
)^2]*Sqrt[(a*e^2 + c*d*(d + 2*e*x))^2])/(2*2^(1/3)*c^(5/3)*d^(5/3)*e^(2/3)*(c*d^2 + a*e^2 + 2*c*d*e*x)*((1 + S
qrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))) - (3*3^(1/4)
*Sqrt[2 - Sqrt[3]]*(c*d^2 - a*e^2)^(5/3)*Sqrt[(c*d^2 + a*e^2 + 2*c*d*e*x)^2]*((c*d^2 - a*e^2)^(2/3) + 2^(2/3)*
c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))*Sqrt[((c*d^2 - a*e^2)^(4/3) - 2^(2/3)*c^(1/3)*d^(1/3)
*e^(1/3)*(c*d^2 - a*e^2)^(2/3)*((a*e + c*d*x)*(d + e*x))^(1/3) + 2*2^(1/3)*c^(2/3)*d^(2/3)*e^(2/3)*((a*e + c*d
*x)*(d + e*x))^(2/3))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d
+ e*x))^(1/3))^2]*EllipticE[ArcSin[((1 - Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a
*e + c*d*x)*(d + e*x))^(1/3))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c
*d*x)*(d + e*x))^(1/3))], -7 - 4*Sqrt[3]])/(4*2^(1/3)*c^(5/3)*d^(5/3)*e^(2/3)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt
[((c*d^2 - a*e^2)^(2/3)*((c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/
3)))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))^2
]*Sqrt[(a*e^2 + c*d*(d + 2*e*x))^2]) + (3^(3/4)*(c*d^2 - a*e^2)^(5/3)*Sqrt[(c*d^2 + a*e^2 + 2*c*d*e*x)^2]*((c*
d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))*Sqrt[((c*d^2 - a*e^2)^(4
/3) - 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*(c*d^2 - a*e^2)^(2/3)*((a*e + c*d*x)*(d + e*x))^(1/3) + 2*2^(1/3)*c^(2/3
)*d^(2/3)*e^(2/3)*((a*e + c*d*x)*(d + e*x))^(2/3))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1
/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))^2]*EllipticF[ArcSin[((1 - Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3
)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1
/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))], -7 - 4*Sqrt[3]])/(2^(5/6)*c^(5/3)*d^(5/3)*e^(2/3)*(c*d^
2 + a*e^2 + 2*c*d*e*x)*Sqrt[((c*d^2 - a*e^2)^(2/3)*((c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((
a*e + c*d*x)*(d + e*x))^(1/3)))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e +
c*d*x)*(d + e*x))^(1/3))^2]*Sqrt[(a*e^2 + c*d*(d + 2*e*x))^2])

________________________________________________________________________________________

Rubi [A]  time = 2.23619, antiderivative size = 1485, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 35, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.143, Rules used = {640, 623, 303, 218, 1877} $\text{result too large to display}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(1/3),x]

[Out]

(3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(2/3))/(4*c*d) + (3*(c*d^2 - a*e^2)*Sqrt[(c*d^2 + a*e^2 + 2*c*d*e*x
)^2]*Sqrt[(a*e^2 + c*d*(d + 2*e*x))^2])/(2*2^(1/3)*c^(5/3)*d^(5/3)*e^(2/3)*(c*d^2 + a*e^2 + 2*c*d*e*x)*((1 + S
qrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))) - (3*3^(1/4)
*Sqrt[2 - Sqrt[3]]*(c*d^2 - a*e^2)^(5/3)*Sqrt[(c*d^2 + a*e^2 + 2*c*d*e*x)^2]*((c*d^2 - a*e^2)^(2/3) + 2^(2/3)*
c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))*Sqrt[((c*d^2 - a*e^2)^(4/3) - 2^(2/3)*c^(1/3)*d^(1/3)
*e^(1/3)*(c*d^2 - a*e^2)^(2/3)*((a*e + c*d*x)*(d + e*x))^(1/3) + 2*2^(1/3)*c^(2/3)*d^(2/3)*e^(2/3)*((a*e + c*d
*x)*(d + e*x))^(2/3))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d
+ e*x))^(1/3))^2]*EllipticE[ArcSin[((1 - Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a
*e + c*d*x)*(d + e*x))^(1/3))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c
*d*x)*(d + e*x))^(1/3))], -7 - 4*Sqrt[3]])/(4*2^(1/3)*c^(5/3)*d^(5/3)*e^(2/3)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt
[((c*d^2 - a*e^2)^(2/3)*((c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/
3)))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))^2
]*Sqrt[(a*e^2 + c*d*(d + 2*e*x))^2]) + (3^(3/4)*(c*d^2 - a*e^2)^(5/3)*Sqrt[(c*d^2 + a*e^2 + 2*c*d*e*x)^2]*((c*
d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))*Sqrt[((c*d^2 - a*e^2)^(4
/3) - 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*(c*d^2 - a*e^2)^(2/3)*((a*e + c*d*x)*(d + e*x))^(1/3) + 2*2^(1/3)*c^(2/3
)*d^(2/3)*e^(2/3)*((a*e + c*d*x)*(d + e*x))^(2/3))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1
/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))^2]*EllipticF[ArcSin[((1 - Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3
)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1
/3)*d^(1/3)*e^(1/3)*((a*e + c*d*x)*(d + e*x))^(1/3))], -7 - 4*Sqrt[3]])/(2^(5/6)*c^(5/3)*d^(5/3)*e^(2/3)*(c*d^
2 + a*e^2 + 2*c*d*e*x)*Sqrt[((c*d^2 - a*e^2)^(2/3)*((c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((
a*e + c*d*x)*(d + e*x))^(1/3)))/((1 + Sqrt[3])*(c*d^2 - a*e^2)^(2/3) + 2^(2/3)*c^(1/3)*d^(1/3)*e^(1/3)*((a*e +
c*d*x)*(d + e*x))^(1/3))^2]*Sqrt[(a*e^2 + c*d*(d + 2*e*x))^2])

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 623

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{d = Denominator[p]}, Dist[(d*Sqrt[(b + 2*c*x)
^2])/(b + 2*c*x), Subst[Int[x^(d*(p + 1) - 1)/Sqrt[b^2 - 4*a*c + 4*c*x^d], x], x, (a + b*x + c*x^2)^(1/d)], x]
/; 3 <= d <= 4] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && RationalQ[p]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{d+e x}{\sqrt [3]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac{3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{2/3}}{4 c d}+\frac{\left (d^2-\frac{a e^2}{c}\right ) \int \frac{1}{\sqrt [3]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 d}\\ &=\frac{3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{2/3}}{4 c d}+\frac{\left (3 \left (d^2-\frac{a e^2}{c}\right ) \sqrt{\left (c d^2+a e^2+2 c d e x\right )^2}\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{-4 a c d^2 e^2+\left (c d^2+a e^2\right )^2+4 c d e x^3}} \, dx,x,\sqrt [3]{(a e+c d x) (d+e x)}\right )}{2 d \left (c d^2+a e^2+2 c d e x\right )}\\ &=\frac{3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{2/3}}{4 c d}+\frac{\left (3 \left (d^2-\frac{a e^2}{c}\right ) \sqrt{\left (c d^2+a e^2+2 c d e x\right )^2}\right ) \operatorname{Subst}\left (\int \frac{\left (1-\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} x}{\sqrt{-4 a c d^2 e^2+\left (c d^2+a e^2\right )^2+4 c d e x^3}} \, dx,x,\sqrt [3]{(a e+c d x) (d+e x)}\right )}{2\ 2^{2/3} \sqrt [3]{c} d^{4/3} \sqrt [3]{e} \left (c d^2+a e^2+2 c d e x\right )}+\frac{\left (3 \left (c d^2-a e^2\right )^{2/3} \left (d^2-\frac{a e^2}{c}\right ) \sqrt{\left (c d^2+a e^2+2 c d e x\right )^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-4 a c d^2 e^2+\left (c d^2+a e^2\right )^2+4 c d e x^3}} \, dx,x,\sqrt [3]{(a e+c d x) (d+e x)}\right )}{2 \sqrt [6]{2} \sqrt{2+\sqrt{3}} \sqrt [3]{c} d^{4/3} \sqrt [3]{e} \left (c d^2+a e^2+2 c d e x\right )}\\ &=\frac{3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{2/3}}{4 c d}+\frac{3 \left (c d^2-a e^2\right ) \sqrt{\left (c d^2+a e^2+2 c d e x\right )^2} \sqrt{\left (a e^2+c d (d+2 e x)\right )^2}}{2 \sqrt [3]{2} c^{5/3} d^{5/3} e^{2/3} \left (c d^2+a e^2+2 c d e x\right ) \left (\left (1+\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}\right )}-\frac{3 \sqrt [4]{3} \sqrt{2-\sqrt{3}} \left (c d^2-a e^2\right )^{5/3} \sqrt{\left (c d^2+a e^2+2 c d e x\right )^2} \left (\left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}\right ) \sqrt{\frac{\left (c d^2-a e^2\right )^{4/3}-2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \left (c d^2-a e^2\right )^{2/3} \sqrt [3]{(a e+c d x) (d+e x)}+2 \sqrt [3]{2} c^{2/3} d^{2/3} e^{2/3} ((a e+c d x) (d+e x))^{2/3}}{\left (\left (1+\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}\right )^2}} E\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}}{\left (1+\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}}\right )|-7-4 \sqrt{3}\right )}{4 \sqrt [3]{2} c^{5/3} d^{5/3} e^{2/3} \left (c d^2+a e^2+2 c d e x\right ) \sqrt{\frac{\left (c d^2-a e^2\right )^{2/3} \left (\left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}\right )}{\left (\left (1+\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}\right )^2}} \sqrt{\left (a e^2+c d (d+2 e x)\right )^2}}+\frac{3^{3/4} \left (c d^2-a e^2\right )^{5/3} \sqrt{\left (c d^2+a e^2+2 c d e x\right )^2} \left (\left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}\right ) \sqrt{\frac{\left (c d^2-a e^2\right )^{4/3}-2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \left (c d^2-a e^2\right )^{2/3} \sqrt [3]{(a e+c d x) (d+e x)}+2 \sqrt [3]{2} c^{2/3} d^{2/3} e^{2/3} ((a e+c d x) (d+e x))^{2/3}}{\left (\left (1+\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}}{\left (1+\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}}\right )|-7-4 \sqrt{3}\right )}{2^{5/6} c^{5/3} d^{5/3} e^{2/3} \left (c d^2+a e^2+2 c d e x\right ) \sqrt{\frac{\left (c d^2-a e^2\right )^{2/3} \left (\left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}\right )}{\left (\left (1+\sqrt{3}\right ) \left (c d^2-a e^2\right )^{2/3}+2^{2/3} \sqrt [3]{c} \sqrt [3]{d} \sqrt [3]{e} \sqrt [3]{(a e+c d x) (d+e x)}\right )^2}} \sqrt{\left (a e^2+c d (d+2 e x)\right )^2}}\\ \end{align*}

Mathematica [C]  time = 0.0587443, size = 88, normalized size = 0.06 $\frac{3 ((d+e x) (a e+c d x))^{2/3} \, _2F_1\left (-\frac{2}{3},\frac{2}{3};\frac{5}{3};\frac{e (a e+c d x)}{a e^2-c d^2}\right )}{2 c d \left (\frac{c d (d+e x)}{c d^2-a e^2}\right )^{2/3}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(1/3),x]

[Out]

(3*((a*e + c*d*x)*(d + e*x))^(2/3)*Hypergeometric2F1[-2/3, 2/3, 5/3, (e*(a*e + c*d*x))/(-(c*d^2) + a*e^2)])/(2
*c*d*((c*d*(d + e*x))/(c*d^2 - a*e^2))^(2/3))

________________________________________________________________________________________

Maple [F]  time = 0.992, size = 0, normalized size = 0. \begin{align*} \int{(ex+d){\frac{1}{\sqrt [3]{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/3),x)

[Out]

int((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x + d}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/3),x, algorithm="maxima")

[Out]

integrate((e*x + d)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(1/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{2}{3}}}{c d x + a e}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/3),x, algorithm="fricas")

[Out]

integral((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(2/3)/(c*d*x + a*e), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d + e x}{\sqrt [3]{\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/3),x)

[Out]

Integral((d + e*x)/((d + e*x)*(a*e + c*d*x))**(1/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x + d}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/3),x, algorithm="giac")

[Out]

integrate((e*x + d)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(1/3), x)