### 3.1950 $$\int \frac{1}{(d+e x) \sqrt{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx$$

Optimal. Leaf size=52 $\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{(d+e x) \left (c d^2-a e^2\right )}$

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/((c*d^2 - a*e^2)*(d + e*x))

________________________________________________________________________________________

Rubi [A]  time = 0.0198817, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 37, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.027, Rules used = {650} $\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{(d+e x) \left (c d^2-a e^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/((c*d^2 - a*e^2)*(d + e*x))

Rule 650

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((p + 1)*(2*c*d - b*e)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac{2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\left (c d^2-a e^2\right ) (d+e x)}\\ \end{align*}

Mathematica [A]  time = 0.0166788, size = 42, normalized size = 0.81 $\frac{2 (a e+c d x)}{\left (c d^2-a e^2\right ) \sqrt{(d+e x) (a e+c d x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*(a*e + c*d*x))/((c*d^2 - a*e^2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 51, normalized size = 1. \begin{align*} -2\,{\frac{cdx+ae}{ \left ( a{e}^{2}-c{d}^{2} \right ) \sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

-2*(c*d*x+a*e)/(a*e^2-c*d^2)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.19918, size = 117, normalized size = 2.25 \begin{align*} \frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{c d^{3} - a d e^{2} +{\left (c d^{2} e - a e^{3}\right )} x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(c*d^3 - a*d*e^2 + (c*d^2*e - a*e^3)*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError