### 3.1927 $$\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^5} \, dx$$

Optimal. Leaf size=54 $\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 (d+e x)^5 \left (c d^2-a e^2\right )}$

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(5*(c*d^2 - a*e^2)*(d + e*x)^5)

________________________________________________________________________________________

Rubi [A]  time = 0.0205957, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 37, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.027, Rules used = {650} $\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 (d+e x)^5 \left (c d^2-a e^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^5,x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(5*(c*d^2 - a*e^2)*(d + e*x)^5)

Rule 650

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((p + 1)*(2*c*d - b*e)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^5} \, dx &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{5 \left (c d^2-a e^2\right ) (d+e x)^5}\\ \end{align*}

Mathematica [A]  time = 0.0321824, size = 43, normalized size = 0.8 $\frac{2 ((d+e x) (a e+c d x))^{5/2}}{5 (d+e x)^5 \left (c d^2-a e^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^5,x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(5/2))/(5*(c*d^2 - a*e^2)*(d + e*x)^5)

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 58, normalized size = 1.1 \begin{align*} -{\frac{2\,cdx+2\,ae}{5\, \left ( ex+d \right ) ^{4} \left ( a{e}^{2}-c{d}^{2} \right ) } \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{{\frac{3}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^5,x)

[Out]

-2/5*(c*d*x+a*e)/(e*x+d)^4/(a*e^2-c*d^2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 7.51395, size = 258, normalized size = 4.78 \begin{align*} \frac{2 \,{\left (c^{2} d^{2} x^{2} + 2 \, a c d e x + a^{2} e^{2}\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{5 \,{\left (c d^{5} - a d^{3} e^{2} +{\left (c d^{2} e^{3} - a e^{5}\right )} x^{3} + 3 \,{\left (c d^{3} e^{2} - a d e^{4}\right )} x^{2} + 3 \,{\left (c d^{4} e - a d^{2} e^{3}\right )} x\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^5,x, algorithm="fricas")

[Out]

2/5*(c^2*d^2*x^2 + 2*a*c*d*e*x + a^2*e^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(c*d^5 - a*d^3*e^2 + (c*
d^2*e^3 - a*e^5)*x^3 + 3*(c*d^3*e^2 - a*d*e^4)*x^2 + 3*(c*d^4*e - a*d^2*e^3)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^5,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError