### 3.1917 $$\int \frac{\sqrt{a d e+(c d^2+a e^2) x+c d e x^2}}{(d+e x)^6} \, dx$$

Optimal. Leaf size=231 $\frac{32 c^3 d^3 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{315 (d+e x)^3 \left (c d^2-a e^2\right )^4}+\frac{16 c^2 d^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{105 (d+e x)^4 \left (c d^2-a e^2\right )^3}+\frac{4 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{21 (d+e x)^5 \left (c d^2-a e^2\right )^2}+\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{9 (d+e x)^6 \left (c d^2-a e^2\right )}$

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(9*(c*d^2 - a*e^2)*(d + e*x)^6) + (4*c*d*(a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2)^(3/2))/(21*(c*d^2 - a*e^2)^2*(d + e*x)^5) + (16*c^2*d^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*
e*x^2)^(3/2))/(105*(c*d^2 - a*e^2)^3*(d + e*x)^4) + (32*c^3*d^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))
/(315*(c*d^2 - a*e^2)^4*(d + e*x)^3)

________________________________________________________________________________________

Rubi [A]  time = 0.115105, antiderivative size = 231, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 2, integrand size = 37, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.054, Rules used = {658, 650} $\frac{32 c^3 d^3 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{315 (d+e x)^3 \left (c d^2-a e^2\right )^4}+\frac{16 c^2 d^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{105 (d+e x)^4 \left (c d^2-a e^2\right )^3}+\frac{4 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{21 (d+e x)^5 \left (c d^2-a e^2\right )^2}+\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{9 (d+e x)^6 \left (c d^2-a e^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^6,x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(9*(c*d^2 - a*e^2)*(d + e*x)^6) + (4*c*d*(a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2)^(3/2))/(21*(c*d^2 - a*e^2)^2*(d + e*x)^5) + (16*c^2*d^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*
e*x^2)^(3/2))/(105*(c*d^2 - a*e^2)^3*(d + e*x)^4) + (32*c^3*d^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))
/(315*(c*d^2 - a*e^2)^4*(d + e*x)^3)

Rule 658

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((m + p + 1)*(2*c*d - b*e)), x] + Dist[(c*Simplify[m + 2*p + 2])/((m + p + 1)*(2*c*d -
b*e)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c
, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2], 0]

Rule 650

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((p + 1)*(2*c*d - b*e)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^6} \, dx &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{9 \left (c d^2-a e^2\right ) (d+e x)^6}+\frac{(2 c d) \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^5} \, dx}{3 \left (c d^2-a e^2\right )}\\ &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{9 \left (c d^2-a e^2\right ) (d+e x)^6}+\frac{4 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{21 \left (c d^2-a e^2\right )^2 (d+e x)^5}+\frac{\left (8 c^2 d^2\right ) \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^4} \, dx}{21 \left (c d^2-a e^2\right )^2}\\ &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{9 \left (c d^2-a e^2\right ) (d+e x)^6}+\frac{4 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{21 \left (c d^2-a e^2\right )^2 (d+e x)^5}+\frac{16 c^2 d^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{105 \left (c d^2-a e^2\right )^3 (d+e x)^4}+\frac{\left (16 c^3 d^3\right ) \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx}{105 \left (c d^2-a e^2\right )^3}\\ &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{9 \left (c d^2-a e^2\right ) (d+e x)^6}+\frac{4 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{21 \left (c d^2-a e^2\right )^2 (d+e x)^5}+\frac{16 c^2 d^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{105 \left (c d^2-a e^2\right )^3 (d+e x)^4}+\frac{32 c^3 d^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{315 \left (c d^2-a e^2\right )^4 (d+e x)^3}\\ \end{align*}

Mathematica [A]  time = 0.0637766, size = 180, normalized size = 0.78 $\frac{2 \sqrt{(d+e x) (a e+c d x)} \left (3 a^2 c^2 d^2 e^3 \left (-63 d^2+9 d e x+2 e^2 x^2\right )+5 a^3 c d e^5 (27 d-e x)-35 a^4 e^7+a c^3 d^3 e \left (-63 d^2 e x+105 d^3-36 d e^2 x^2-8 e^3 x^3\right )+c^4 d^4 x \left (126 d^2 e x+105 d^3+72 d e^2 x^2+16 e^3 x^3\right )\right )}{315 (d+e x)^5 \left (c d^2-a e^2\right )^4}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^6,x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(-35*a^4*e^7 + 5*a^3*c*d*e^5*(27*d - e*x) + 3*a^2*c^2*d^2*e^3*(-63*d^2 + 9*d*
e*x + 2*e^2*x^2) + a*c^3*d^3*e*(105*d^3 - 63*d^2*e*x - 36*d*e^2*x^2 - 8*e^3*x^3) + c^4*d^4*x*(105*d^3 + 126*d^
2*e*x + 72*d*e^2*x^2 + 16*e^3*x^3)))/(315*(c*d^2 - a*e^2)^4*(d + e*x)^5)

________________________________________________________________________________________

Maple [A]  time = 0.047, size = 217, normalized size = 0.9 \begin{align*} -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( -16\,{c}^{3}{d}^{3}{e}^{3}{x}^{3}+24\,a{c}^{2}{d}^{2}{e}^{4}{x}^{2}-72\,{c}^{3}{d}^{4}{e}^{2}{x}^{2}-30\,{a}^{2}cd{e}^{5}x+108\,a{c}^{2}{d}^{3}{e}^{3}x-126\,{c}^{3}{d}^{5}ex+35\,{a}^{3}{e}^{6}-135\,{a}^{2}c{d}^{2}{e}^{4}+189\,a{c}^{2}{d}^{4}{e}^{2}-105\,{c}^{3}{d}^{6} \right ) }{315\, \left ( ex+d \right ) ^{5} \left ({a}^{4}{e}^{8}-4\,{a}^{3}c{d}^{2}{e}^{6}+6\,{a}^{2}{c}^{2}{d}^{4}{e}^{4}-4\,a{c}^{3}{d}^{6}{e}^{2}+{c}^{4}{d}^{8} \right ) }\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^6,x)

[Out]

-2/315*(c*d*x+a*e)*(-16*c^3*d^3*e^3*x^3+24*a*c^2*d^2*e^4*x^2-72*c^3*d^4*e^2*x^2-30*a^2*c*d*e^5*x+108*a*c^2*d^3
*e^3*x-126*c^3*d^5*e*x+35*a^3*e^6-135*a^2*c*d^2*e^4+189*a*c^2*d^4*e^2-105*c^3*d^6)*(c*d*e*x^2+a*e^2*x+c*d^2*x+
a*d*e)^(1/2)/(e*x+d)^5/(a^4*e^8-4*a^3*c*d^2*e^6+6*a^2*c^2*d^4*e^4-4*a*c^3*d^6*e^2+c^4*d^8)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^6,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 68.5094, size = 1161, normalized size = 5.03 \begin{align*} \frac{2 \,{\left (16 \, c^{4} d^{4} e^{3} x^{4} + 105 \, a c^{3} d^{6} e - 189 \, a^{2} c^{2} d^{4} e^{3} + 135 \, a^{3} c d^{2} e^{5} - 35 \, a^{4} e^{7} + 8 \,{\left (9 \, c^{4} d^{5} e^{2} - a c^{3} d^{3} e^{4}\right )} x^{3} + 6 \,{\left (21 \, c^{4} d^{6} e - 6 \, a c^{3} d^{4} e^{3} + a^{2} c^{2} d^{2} e^{5}\right )} x^{2} +{\left (105 \, c^{4} d^{7} - 63 \, a c^{3} d^{5} e^{2} + 27 \, a^{2} c^{2} d^{3} e^{4} - 5 \, a^{3} c d e^{6}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{315 \,{\left (c^{4} d^{13} - 4 \, a c^{3} d^{11} e^{2} + 6 \, a^{2} c^{2} d^{9} e^{4} - 4 \, a^{3} c d^{7} e^{6} + a^{4} d^{5} e^{8} +{\left (c^{4} d^{8} e^{5} - 4 \, a c^{3} d^{6} e^{7} + 6 \, a^{2} c^{2} d^{4} e^{9} - 4 \, a^{3} c d^{2} e^{11} + a^{4} e^{13}\right )} x^{5} + 5 \,{\left (c^{4} d^{9} e^{4} - 4 \, a c^{3} d^{7} e^{6} + 6 \, a^{2} c^{2} d^{5} e^{8} - 4 \, a^{3} c d^{3} e^{10} + a^{4} d e^{12}\right )} x^{4} + 10 \,{\left (c^{4} d^{10} e^{3} - 4 \, a c^{3} d^{8} e^{5} + 6 \, a^{2} c^{2} d^{6} e^{7} - 4 \, a^{3} c d^{4} e^{9} + a^{4} d^{2} e^{11}\right )} x^{3} + 10 \,{\left (c^{4} d^{11} e^{2} - 4 \, a c^{3} d^{9} e^{4} + 6 \, a^{2} c^{2} d^{7} e^{6} - 4 \, a^{3} c d^{5} e^{8} + a^{4} d^{3} e^{10}\right )} x^{2} + 5 \,{\left (c^{4} d^{12} e - 4 \, a c^{3} d^{10} e^{3} + 6 \, a^{2} c^{2} d^{8} e^{5} - 4 \, a^{3} c d^{6} e^{7} + a^{4} d^{4} e^{9}\right )} x\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^6,x, algorithm="fricas")

[Out]

2/315*(16*c^4*d^4*e^3*x^4 + 105*a*c^3*d^6*e - 189*a^2*c^2*d^4*e^3 + 135*a^3*c*d^2*e^5 - 35*a^4*e^7 + 8*(9*c^4*
d^5*e^2 - a*c^3*d^3*e^4)*x^3 + 6*(21*c^4*d^6*e - 6*a*c^3*d^4*e^3 + a^2*c^2*d^2*e^5)*x^2 + (105*c^4*d^7 - 63*a*
c^3*d^5*e^2 + 27*a^2*c^2*d^3*e^4 - 5*a^3*c*d*e^6)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(c^4*d^13 - 4
*a*c^3*d^11*e^2 + 6*a^2*c^2*d^9*e^4 - 4*a^3*c*d^7*e^6 + a^4*d^5*e^8 + (c^4*d^8*e^5 - 4*a*c^3*d^6*e^7 + 6*a^2*c
^2*d^4*e^9 - 4*a^3*c*d^2*e^11 + a^4*e^13)*x^5 + 5*(c^4*d^9*e^4 - 4*a*c^3*d^7*e^6 + 6*a^2*c^2*d^5*e^8 - 4*a^3*c
*d^3*e^10 + a^4*d*e^12)*x^4 + 10*(c^4*d^10*e^3 - 4*a*c^3*d^8*e^5 + 6*a^2*c^2*d^6*e^7 - 4*a^3*c*d^4*e^9 + a^4*d
^2*e^11)*x^3 + 10*(c^4*d^11*e^2 - 4*a*c^3*d^9*e^4 + 6*a^2*c^2*d^7*e^6 - 4*a^3*c*d^5*e^8 + a^4*d^3*e^10)*x^2 +
5*(c^4*d^12*e - 4*a*c^3*d^10*e^3 + 6*a^2*c^2*d^8*e^5 - 4*a^3*c*d^6*e^7 + a^4*d^4*e^9)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**6,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^6,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError