### 3.1915 $$\int \frac{\sqrt{a d e+(c d^2+a e^2) x+c d e x^2}}{(d+e x)^4} \, dx$$

Optimal. Leaf size=111 $\frac{4 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{15 (d+e x)^3 \left (c d^2-a e^2\right )^2}+\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{5 (d+e x)^4 \left (c d^2-a e^2\right )}$

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(5*(c*d^2 - a*e^2)*(d + e*x)^4) + (4*c*d*(a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2)^(3/2))/(15*(c*d^2 - a*e^2)^2*(d + e*x)^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0469014, antiderivative size = 111, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 37, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.054, Rules used = {658, 650} $\frac{4 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{15 (d+e x)^3 \left (c d^2-a e^2\right )^2}+\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{5 (d+e x)^4 \left (c d^2-a e^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^4,x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(5*(c*d^2 - a*e^2)*(d + e*x)^4) + (4*c*d*(a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2)^(3/2))/(15*(c*d^2 - a*e^2)^2*(d + e*x)^3)

Rule 658

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((m + p + 1)*(2*c*d - b*e)), x] + Dist[(c*Simplify[m + 2*p + 2])/((m + p + 1)*(2*c*d -
b*e)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c
, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p + 2], 0]

Rule 650

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a +
b*x + c*x^2)^(p + 1))/((p + 1)*(2*c*d - b*e)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^4} \, dx &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 \left (c d^2-a e^2\right ) (d+e x)^4}+\frac{(2 c d) \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^3} \, dx}{5 \left (c d^2-a e^2\right )}\\ &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 \left (c d^2-a e^2\right ) (d+e x)^4}+\frac{4 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{15 \left (c d^2-a e^2\right )^2 (d+e x)^3}\\ \end{align*}

Mathematica [A]  time = 0.0311292, size = 61, normalized size = 0.55 $\frac{2 ((d+e x) (a e+c d x))^{3/2} \left (c d (5 d+2 e x)-3 a e^2\right )}{15 (d+e x)^4 \left (c d^2-a e^2\right )^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^4,x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(3/2)*(-3*a*e^2 + c*d*(5*d + 2*e*x)))/(15*(c*d^2 - a*e^2)^2*(d + e*x)^4)

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 90, normalized size = 0.8 \begin{align*} -{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( -2\,cdex+3\,a{e}^{2}-5\,c{d}^{2} \right ) }{15\, \left ( ex+d \right ) ^{3} \left ({a}^{2}{e}^{4}-2\,ac{d}^{2}{e}^{2}+{c}^{2}{d}^{4} \right ) }\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^4,x)

[Out]

-2/15*(c*d*x+a*e)*(-2*c*d*e*x+3*a*e^2-5*c*d^2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)/(e*x+d)^3/(a^2*e^4-2*a*
c*d^2*e^2+c^2*d^4)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 5.94177, size = 413, normalized size = 3.72 \begin{align*} \frac{2 \,{\left (2 \, c^{2} d^{2} e x^{2} + 5 \, a c d^{2} e - 3 \, a^{2} e^{3} +{\left (5 \, c^{2} d^{3} - a c d e^{2}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{15 \,{\left (c^{2} d^{7} - 2 \, a c d^{5} e^{2} + a^{2} d^{3} e^{4} +{\left (c^{2} d^{4} e^{3} - 2 \, a c d^{2} e^{5} + a^{2} e^{7}\right )} x^{3} + 3 \,{\left (c^{2} d^{5} e^{2} - 2 \, a c d^{3} e^{4} + a^{2} d e^{6}\right )} x^{2} + 3 \,{\left (c^{2} d^{6} e - 2 \, a c d^{4} e^{3} + a^{2} d^{2} e^{5}\right )} x\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^4,x, algorithm="fricas")

[Out]

2/15*(2*c^2*d^2*e*x^2 + 5*a*c*d^2*e - 3*a^2*e^3 + (5*c^2*d^3 - a*c*d*e^2)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 +
a*e^2)*x)/(c^2*d^7 - 2*a*c*d^5*e^2 + a^2*d^3*e^4 + (c^2*d^4*e^3 - 2*a*c*d^2*e^5 + a^2*e^7)*x^3 + 3*(c^2*d^5*e
^2 - 2*a*c*d^3*e^4 + a^2*d*e^6)*x^2 + 3*(c^2*d^6*e - 2*a*c*d^4*e^3 + a^2*d^2*e^5)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^4,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError