3.1908 $$\int (d+e x)^3 \sqrt{a d e+(c d^2+a e^2) x+c d e x^2} \, dx$$

Optimal. Leaf size=328 $\frac{7 \left (c d^2-a e^2\right )^3 \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{128 c^4 d^4 e}+\frac{7 \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac{7 (d+e x) \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{40 c^2 d^2}-\frac{7 \left (c d^2-a e^2\right )^5 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{256 c^{9/2} d^{9/2} e^{3/2}}+\frac{(d+e x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{5 c d}$

[Out]

(7*(c*d^2 - a*e^2)^3*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(128*c^4*d^4*e)
+ (7*(c*d^2 - a*e^2)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(48*c^3*d^3) + (7*(c*d^2 - a*e^2)*(d + e
*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(40*c^2*d^2) + ((d + e*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*
d*e*x^2)^(3/2))/(5*c*d) - (7*(c*d^2 - a*e^2)^5*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*
Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(256*c^(9/2)*d^(9/2)*e^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.275629, antiderivative size = 328, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 37, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.135, Rules used = {670, 640, 612, 621, 206} $\frac{7 \left (c d^2-a e^2\right )^3 \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{128 c^4 d^4 e}+\frac{7 \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac{7 (d+e x) \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{40 c^2 d^2}-\frac{7 \left (c d^2-a e^2\right )^5 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{256 c^{9/2} d^{9/2} e^{3/2}}+\frac{(d+e x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{5 c d}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(7*(c*d^2 - a*e^2)^3*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(128*c^4*d^4*e)
+ (7*(c*d^2 - a*e^2)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(48*c^3*d^3) + (7*(c*d^2 - a*e^2)*(d + e
*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(40*c^2*d^2) + ((d + e*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*
d*e*x^2)^(3/2))/(5*c*d) - (7*(c*d^2 - a*e^2)^5*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*
Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(256*c^(9/2)*d^(9/2)*e^(3/2))

Rule 670

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[((m + p)*(2*c*d - b*e))/(c*(m + 2*p + 1)), Int[(d + e
*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
&& NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (d+e x)^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx &=\frac{(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}+\frac{\left (7 \left (d^2-\frac{a e^2}{c}\right )\right ) \int (d+e x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{10 d}\\ &=\frac{7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac{(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}+\frac{\left (7 \left (d^2-\frac{a e^2}{c}\right )^2\right ) \int (d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{16 d^2}\\ &=\frac{7 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac{7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac{(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}+\frac{\left (7 \left (d^2-\frac{a e^2}{c}\right )^3\right ) \int \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{32 d^3}\\ &=\frac{7 \left (c d^2-a e^2\right )^3 \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^4 d^4 e}+\frac{7 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac{7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac{(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}-\frac{\left (7 \left (c d^2-a e^2\right )^5\right ) \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{256 c^4 d^4 e}\\ &=\frac{7 \left (c d^2-a e^2\right )^3 \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^4 d^4 e}+\frac{7 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac{7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac{(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}-\frac{\left (7 \left (c d^2-a e^2\right )^5\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 c^4 d^4 e}\\ &=\frac{7 \left (c d^2-a e^2\right )^3 \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{128 c^4 d^4 e}+\frac{7 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{48 c^3 d^3}+\frac{7 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{40 c^2 d^2}+\frac{(d+e x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{5 c d}-\frac{7 \left (c d^2-a e^2\right )^5 \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{256 c^{9/2} d^{9/2} e^{3/2}}\\ \end{align*}

Mathematica [A]  time = 1.91636, size = 291, normalized size = 0.89 $\frac{(a e+c d x) \sqrt{(d+e x) (a e+c d x)} \left (336 c^5 d^5 (d+e x)^2 \left (c d^2-a e^2\right )+280 c^4 d^4 (d+e x) \left (c d^2-a e^2\right )^2+\frac{105 c^3 d^3 \left (c d^2-a e^2\right )^4}{e (a e+c d x)}-\frac{105 c^{5/2} d^{5/2} \sqrt{c d} \left (c d^2-a e^2\right )^{9/2} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )}{e^{3/2} (a e+c d x)^{3/2} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}}}+210 \left (c^2 d^3-a c d e^2\right )^3+384 c^6 d^6 (d+e x)^3\right )}{1920 c^7 d^7}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

((a*e + c*d*x)*Sqrt[(a*e + c*d*x)*(d + e*x)]*(210*(c^2*d^3 - a*c*d*e^2)^3 + (105*c^3*d^3*(c*d^2 - a*e^2)^4)/(e
*(a*e + c*d*x)) + 280*c^4*d^4*(c*d^2 - a*e^2)^2*(d + e*x) + 336*c^5*d^5*(c*d^2 - a*e^2)*(d + e*x)^2 + 384*c^6*
d^6*(d + e*x)^3 - (105*c^(5/2)*d^(5/2)*Sqrt[c*d]*(c*d^2 - a*e^2)^(9/2)*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a
*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])/(e^(3/2)*(a*e + c*d*x)^(3/2)*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^
2)])))/(1920*c^7*d^7)

________________________________________________________________________________________

Maple [B]  time = 0.053, size = 968, normalized size = 3. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

-7/40*e^3/d^2/c^2*x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*a-7/64*e^6/d^3/c^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^
2)^(1/2)*x*a^3+21/64*e^4/d/c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*a^2+7/256*e^9/d^4/c^4*ln((1/2*a*e^2+1
/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^5-35/256*e^7/d^2/c^3*
ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^4-21/6
4*e^2*d/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*a-35/128*e^3*d^2/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c
)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^2+23/40*e/c*x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^
2)^(3/2)+25/48*d/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+7/128/e*d^4*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)
+7/64*d^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x-7/64*e*d^2/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a-7/2
56/e*d^6*c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/
2)+35/128*e^5/c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e
*c)^(1/2)*a^3+1/5*e^2*x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/d/c+35/256*e*d^4*ln((1/2*a*e^2+1/2*c*d^2+c*d
*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a-7/15*e^2/d/c^2*(a*d*e+(a*e^2+c*d^
2)*x+c*d*e*x^2)^(3/2)*a+7/48*e^4/d^3/c^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*a^2-7/128*e^7/d^4/c^4*(a*d*e+
(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a^4+7/64*e^5/d^2/c^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.09149, size = 1813, normalized size = 5.53 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/7680*(105*(c^5*d^10 - 5*a*c^4*d^8*e^2 + 10*a^2*c^3*d^6*e^4 - 10*a^3*c^2*d^4*e^6 + 5*a^4*c*d^2*e^8 - a^5*e^1
0)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 +
a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(384*c^5*d^5*e^5*x^4 + 1
05*c^5*d^9*e + 790*a*c^4*d^7*e^3 - 896*a^2*c^3*d^5*e^5 + 490*a^3*c^2*d^3*e^7 - 105*a^4*c*d*e^9 + 48*(31*c^5*d^
6*e^4 + a*c^4*d^4*e^6)*x^3 + 8*(263*c^5*d^7*e^3 + 32*a*c^4*d^5*e^5 - 7*a^2*c^3*d^3*e^7)*x^2 + 2*(605*c^5*d^8*e
^2 + 289*a*c^4*d^6*e^4 - 161*a^2*c^3*d^4*e^6 + 35*a^3*c^2*d^2*e^8)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)
*x))/(c^5*d^5*e^2), 1/3840*(105*(c^5*d^10 - 5*a*c^4*d^8*e^2 + 10*a^2*c^3*d^6*e^4 - 10*a^3*c^2*d^4*e^6 + 5*a^4*
c*d^2*e^8 - a^5*e^10)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 +
a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(384*c^5*d^5*e^5*x^4 + 1
05*c^5*d^9*e + 790*a*c^4*d^7*e^3 - 896*a^2*c^3*d^5*e^5 + 490*a^3*c^2*d^3*e^7 - 105*a^4*c*d*e^9 + 48*(31*c^5*d^
6*e^4 + a*c^4*d^4*e^6)*x^3 + 8*(263*c^5*d^7*e^3 + 32*a*c^4*d^5*e^5 - 7*a^2*c^3*d^3*e^7)*x^2 + 2*(605*c^5*d^8*e
^2 + 289*a*c^4*d^6*e^4 - 161*a^2*c^3*d^4*e^6 + 35*a^3*c^2*d^2*e^8)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)
*x))/(c^5*d^5*e^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.2647, size = 521, normalized size = 1.59 \begin{align*} \frac{1}{1920} \, \sqrt{c d x^{2} e + c d^{2} x + a x e^{2} + a d e}{\left (2 \,{\left (4 \,{\left (6 \,{\left (8 \, x e^{3} + \frac{{\left (31 \, c^{4} d^{5} e^{6} + a c^{3} d^{3} e^{8}\right )} e^{\left (-4\right )}}{c^{4} d^{4}}\right )} x + \frac{{\left (263 \, c^{4} d^{6} e^{5} + 32 \, a c^{3} d^{4} e^{7} - 7 \, a^{2} c^{2} d^{2} e^{9}\right )} e^{\left (-4\right )}}{c^{4} d^{4}}\right )} x + \frac{{\left (605 \, c^{4} d^{7} e^{4} + 289 \, a c^{3} d^{5} e^{6} - 161 \, a^{2} c^{2} d^{3} e^{8} + 35 \, a^{3} c d e^{10}\right )} e^{\left (-4\right )}}{c^{4} d^{4}}\right )} x + \frac{{\left (105 \, c^{4} d^{8} e^{3} + 790 \, a c^{3} d^{6} e^{5} - 896 \, a^{2} c^{2} d^{4} e^{7} + 490 \, a^{3} c d^{2} e^{9} - 105 \, a^{4} e^{11}\right )} e^{\left (-4\right )}}{c^{4} d^{4}}\right )} + \frac{7 \,{\left (c^{5} d^{10} - 5 \, a c^{4} d^{8} e^{2} + 10 \, a^{2} c^{3} d^{6} e^{4} - 10 \, a^{3} c^{2} d^{4} e^{6} + 5 \, a^{4} c d^{2} e^{8} - a^{5} e^{10}\right )} \sqrt{c d} e^{\left (-\frac{3}{2}\right )} \log \left ({\left | -\sqrt{c d} c d^{2} e^{\frac{1}{2}} - 2 \,{\left (\sqrt{c d} x e^{\frac{1}{2}} - \sqrt{c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} c d e - \sqrt{c d} a e^{\frac{5}{2}} \right |}\right )}{256 \, c^{5} d^{5}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

1/1920*sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e)*(2*(4*(6*(8*x*e^3 + (31*c^4*d^5*e^6 + a*c^3*d^3*e^8)*e^(-4)
/(c^4*d^4))*x + (263*c^4*d^6*e^5 + 32*a*c^3*d^4*e^7 - 7*a^2*c^2*d^2*e^9)*e^(-4)/(c^4*d^4))*x + (605*c^4*d^7*e^
4 + 289*a*c^3*d^5*e^6 - 161*a^2*c^2*d^3*e^8 + 35*a^3*c*d*e^10)*e^(-4)/(c^4*d^4))*x + (105*c^4*d^8*e^3 + 790*a*
c^3*d^6*e^5 - 896*a^2*c^2*d^4*e^7 + 490*a^3*c*d^2*e^9 - 105*a^4*e^11)*e^(-4)/(c^4*d^4)) + 7/256*(c^5*d^10 - 5*
a*c^4*d^8*e^2 + 10*a^2*c^3*d^6*e^4 - 10*a^3*c^2*d^4*e^6 + 5*a^4*c*d^2*e^8 - a^5*e^10)*sqrt(c*d)*e^(-3/2)*log(a
bs(-sqrt(c*d)*c*d^2*e^(1/2) - 2*(sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))*c*d*e - sq
rt(c*d)*a*e^(5/2)))/(c^5*d^5)