### 3.1780 $$\int \frac{(a c+(b c+a d) x+b d x^2)^2}{(a+b x)^8} \, dx$$

Optimal. Leaf size=65 $-\frac{d (b c-a d)}{2 b^3 (a+b x)^4}-\frac{(b c-a d)^2}{5 b^3 (a+b x)^5}-\frac{d^2}{3 b^3 (a+b x)^3}$

[Out]

-(b*c - a*d)^2/(5*b^3*(a + b*x)^5) - (d*(b*c - a*d))/(2*b^3*(a + b*x)^4) - d^2/(3*b^3*(a + b*x)^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0435076, antiderivative size = 65, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 29, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.069, Rules used = {626, 43} $-\frac{d (b c-a d)}{2 b^3 (a+b x)^4}-\frac{(b c-a d)^2}{5 b^3 (a+b x)^5}-\frac{d^2}{3 b^3 (a+b x)^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a*c + (b*c + a*d)*x + b*d*x^2)^2/(a + b*x)^8,x]

[Out]

-(b*c - a*d)^2/(5*b^3*(a + b*x)^5) - (d*(b*c - a*d))/(2*b^3*(a + b*x)^4) - d^2/(3*b^3*(a + b*x)^3)

Rule 626

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c*x)/e)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
IntegerQ[p]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\left (a c+(b c+a d) x+b d x^2\right )^2}{(a+b x)^8} \, dx &=\int \frac{(c+d x)^2}{(a+b x)^6} \, dx\\ &=\int \left (\frac{(b c-a d)^2}{b^2 (a+b x)^6}+\frac{2 d (b c-a d)}{b^2 (a+b x)^5}+\frac{d^2}{b^2 (a+b x)^4}\right ) \, dx\\ &=-\frac{(b c-a d)^2}{5 b^3 (a+b x)^5}-\frac{d (b c-a d)}{2 b^3 (a+b x)^4}-\frac{d^2}{3 b^3 (a+b x)^3}\\ \end{align*}

Mathematica [A]  time = 0.0241188, size = 57, normalized size = 0.88 $-\frac{a^2 d^2+a b d (3 c+5 d x)+b^2 \left (6 c^2+15 c d x+10 d^2 x^2\right )}{30 b^3 (a+b x)^5}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a*c + (b*c + a*d)*x + b*d*x^2)^2/(a + b*x)^8,x]

[Out]

-(a^2*d^2 + a*b*d*(3*c + 5*d*x) + b^2*(6*c^2 + 15*c*d*x + 10*d^2*x^2))/(30*b^3*(a + b*x)^5)

________________________________________________________________________________________

Maple [A]  time = 0.044, size = 71, normalized size = 1.1 \begin{align*} -{\frac{{a}^{2}{d}^{2}-2\,cabd+{b}^{2}{c}^{2}}{5\,{b}^{3} \left ( bx+a \right ) ^{5}}}+{\frac{ \left ( ad-bc \right ) d}{2\,{b}^{3} \left ( bx+a \right ) ^{4}}}-{\frac{{d}^{2}}{3\,{b}^{3} \left ( bx+a \right ) ^{3}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((a*c+(a*d+b*c)*x+b*d*x^2)^2/(b*x+a)^8,x)

[Out]

-1/5*(a^2*d^2-2*a*b*c*d+b^2*c^2)/b^3/(b*x+a)^5+1/2*(a*d-b*c)*d/b^3/(b*x+a)^4-1/3*d^2/b^3/(b*x+a)^3

________________________________________________________________________________________

Maxima [A]  time = 1.0295, size = 147, normalized size = 2.26 \begin{align*} -\frac{10 \, b^{2} d^{2} x^{2} + 6 \, b^{2} c^{2} + 3 \, a b c d + a^{2} d^{2} + 5 \,{\left (3 \, b^{2} c d + a b d^{2}\right )} x}{30 \,{\left (b^{8} x^{5} + 5 \, a b^{7} x^{4} + 10 \, a^{2} b^{6} x^{3} + 10 \, a^{3} b^{5} x^{2} + 5 \, a^{4} b^{4} x + a^{5} b^{3}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*c+(a*d+b*c)*x+b*d*x^2)^2/(b*x+a)^8,x, algorithm="maxima")

[Out]

-1/30*(10*b^2*d^2*x^2 + 6*b^2*c^2 + 3*a*b*c*d + a^2*d^2 + 5*(3*b^2*c*d + a*b*d^2)*x)/(b^8*x^5 + 5*a*b^7*x^4 +
10*a^2*b^6*x^3 + 10*a^3*b^5*x^2 + 5*a^4*b^4*x + a^5*b^3)

________________________________________________________________________________________

Fricas [A]  time = 1.42936, size = 227, normalized size = 3.49 \begin{align*} -\frac{10 \, b^{2} d^{2} x^{2} + 6 \, b^{2} c^{2} + 3 \, a b c d + a^{2} d^{2} + 5 \,{\left (3 \, b^{2} c d + a b d^{2}\right )} x}{30 \,{\left (b^{8} x^{5} + 5 \, a b^{7} x^{4} + 10 \, a^{2} b^{6} x^{3} + 10 \, a^{3} b^{5} x^{2} + 5 \, a^{4} b^{4} x + a^{5} b^{3}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*c+(a*d+b*c)*x+b*d*x^2)^2/(b*x+a)^8,x, algorithm="fricas")

[Out]

-1/30*(10*b^2*d^2*x^2 + 6*b^2*c^2 + 3*a*b*c*d + a^2*d^2 + 5*(3*b^2*c*d + a*b*d^2)*x)/(b^8*x^5 + 5*a*b^7*x^4 +
10*a^2*b^6*x^3 + 10*a^3*b^5*x^2 + 5*a^4*b^4*x + a^5*b^3)

________________________________________________________________________________________

Sympy [B]  time = 1.6324, size = 116, normalized size = 1.78 \begin{align*} - \frac{a^{2} d^{2} + 3 a b c d + 6 b^{2} c^{2} + 10 b^{2} d^{2} x^{2} + x \left (5 a b d^{2} + 15 b^{2} c d\right )}{30 a^{5} b^{3} + 150 a^{4} b^{4} x + 300 a^{3} b^{5} x^{2} + 300 a^{2} b^{6} x^{3} + 150 a b^{7} x^{4} + 30 b^{8} x^{5}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*c+(a*d+b*c)*x+b*d*x**2)**2/(b*x+a)**8,x)

[Out]

-(a**2*d**2 + 3*a*b*c*d + 6*b**2*c**2 + 10*b**2*d**2*x**2 + x*(5*a*b*d**2 + 15*b**2*c*d))/(30*a**5*b**3 + 150*
a**4*b**4*x + 300*a**3*b**5*x**2 + 300*a**2*b**6*x**3 + 150*a*b**7*x**4 + 30*b**8*x**5)

________________________________________________________________________________________

Giac [A]  time = 1.20867, size = 82, normalized size = 1.26 \begin{align*} -\frac{10 \, b^{2} d^{2} x^{2} + 15 \, b^{2} c d x + 5 \, a b d^{2} x + 6 \, b^{2} c^{2} + 3 \, a b c d + a^{2} d^{2}}{30 \,{\left (b x + a\right )}^{5} b^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*c+(a*d+b*c)*x+b*d*x^2)^2/(b*x+a)^8,x, algorithm="giac")

[Out]

-1/30*(10*b^2*d^2*x^2 + 15*b^2*c*d*x + 5*a*b*d^2*x + 6*b^2*c^2 + 3*a*b*c*d + a^2*d^2)/((b*x + a)^5*b^3)