### 3.1728 $$\int \frac{1}{(d+e x)^{3/2} (a^2+2 a b x+b^2 x^2)^{5/2}} \, dx$$

Optimal. Leaf size=329 $\frac{315 e^4 (a+b x)}{64 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^5}+\frac{105 e^3}{64 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^4}-\frac{21 e^2}{32 (a+b x) \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^3}-\frac{315 \sqrt{b} e^4 (a+b x) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{64 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^{11/2}}+\frac{3 e}{8 (a+b x)^2 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^2}-\frac{1}{4 (a+b x)^3 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)}$

[Out]

(105*e^3)/(64*(b*d - a*e)^4*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - 1/(4*(b*d - a*e)*(a + b*x)^3*Sqrt[d
+ e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (3*e)/(8*(b*d - a*e)^2*(a + b*x)^2*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x +
b^2*x^2]) - (21*e^2)/(32*(b*d - a*e)^3*(a + b*x)*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (315*e^4*(a +
b*x))/(64*(b*d - a*e)^5*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (315*Sqrt[b]*e^4*(a + b*x)*ArcTanh[(Sq
rt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(64*(b*d - a*e)^(11/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.181807, antiderivative size = 329, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 4, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.133, Rules used = {646, 51, 63, 208} $\frac{315 e^4 (a+b x)}{64 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^5}+\frac{105 e^3}{64 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^4}-\frac{21 e^2}{32 (a+b x) \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^3}-\frac{315 \sqrt{b} e^4 (a+b x) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{64 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^{11/2}}+\frac{3 e}{8 (a+b x)^2 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^2}-\frac{1}{4 (a+b x)^3 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^(3/2)*(a^2 + 2*a*b*x + b^2*x^2)^(5/2)),x]

[Out]

(105*e^3)/(64*(b*d - a*e)^4*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - 1/(4*(b*d - a*e)*(a + b*x)^3*Sqrt[d
+ e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (3*e)/(8*(b*d - a*e)^2*(a + b*x)^2*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x +
b^2*x^2]) - (21*e^2)/(32*(b*d - a*e)^3*(a + b*x)*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (315*e^4*(a +
b*x))/(64*(b*d - a*e)^5*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (315*Sqrt[b]*e^4*(a + b*x)*ArcTanh[(Sq
rt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(64*(b*d - a*e)^(11/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{3/2} \left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx &=\frac{\left (b^4 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right )^5 (d+e x)^{3/2}} \, dx}{\sqrt{a^2+2 a b x+b^2 x^2}}\\ &=-\frac{1}{4 (b d-a e) (a+b x)^3 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{\left (9 b^3 e \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right )^4 (d+e x)^{3/2}} \, dx}{8 (b d-a e) \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=-\frac{1}{4 (b d-a e) (a+b x)^3 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{3 e}{8 (b d-a e)^2 (a+b x)^2 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (21 b^2 e^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right )^3 (d+e x)^{3/2}} \, dx}{16 (b d-a e)^2 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=-\frac{1}{4 (b d-a e) (a+b x)^3 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{3 e}{8 (b d-a e)^2 (a+b x)^2 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{21 e^2}{32 (b d-a e)^3 (a+b x) \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{\left (105 b e^3 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right )^2 (d+e x)^{3/2}} \, dx}{64 (b d-a e)^3 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{105 e^3}{64 (b d-a e)^4 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{4 (b d-a e) (a+b x)^3 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{3 e}{8 (b d-a e)^2 (a+b x)^2 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{21 e^2}{32 (b d-a e)^3 (a+b x) \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (315 e^4 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right ) (d+e x)^{3/2}} \, dx}{128 (b d-a e)^4 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{105 e^3}{64 (b d-a e)^4 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{4 (b d-a e) (a+b x)^3 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{3 e}{8 (b d-a e)^2 (a+b x)^2 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{21 e^2}{32 (b d-a e)^3 (a+b x) \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{315 e^4 (a+b x)}{64 (b d-a e)^5 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (315 b e^4 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right ) \sqrt{d+e x}} \, dx}{128 (b d-a e)^5 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{105 e^3}{64 (b d-a e)^4 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{4 (b d-a e) (a+b x)^3 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{3 e}{8 (b d-a e)^2 (a+b x)^2 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{21 e^2}{32 (b d-a e)^3 (a+b x) \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{315 e^4 (a+b x)}{64 (b d-a e)^5 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (315 b e^3 \left (a b+b^2 x\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a b-\frac{b^2 d}{e}+\frac{b^2 x^2}{e}} \, dx,x,\sqrt{d+e x}\right )}{64 (b d-a e)^5 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{105 e^3}{64 (b d-a e)^4 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{4 (b d-a e) (a+b x)^3 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{3 e}{8 (b d-a e)^2 (a+b x)^2 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{21 e^2}{32 (b d-a e)^3 (a+b x) \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{315 e^4 (a+b x)}{64 (b d-a e)^5 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{315 \sqrt{b} e^4 (a+b x) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{64 (b d-a e)^{11/2} \sqrt{a^2+2 a b x+b^2 x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0252979, size = 65, normalized size = 0.2 $\frac{2 e^4 (a+b x) \, _2F_1\left (-\frac{1}{2},5;\frac{1}{2};\frac{b (d+e x)}{b d-a e}\right )}{\sqrt{(a+b x)^2} \sqrt{d+e x} (b d-a e)^5}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)^(3/2)*(a^2 + 2*a*b*x + b^2*x^2)^(5/2)),x]

[Out]

(2*e^4*(a + b*x)*Hypergeometric2F1[-1/2, 5, 1/2, (b*(d + e*x))/(b*d - a*e)])/((b*d - a*e)^5*Sqrt[(a + b*x)^2]*
Sqrt[d + e*x])

________________________________________________________________________________________

Maple [B]  time = 0.285, size = 602, normalized size = 1.8 \begin{align*} -{\frac{bx+a}{64\, \left ( ae-bd \right ) ^{5}} \left ( 315\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \sqrt{ex+d}{x}^{4}{b}^{5}{e}^{4}+1260\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \sqrt{ex+d}{x}^{3}a{b}^{4}{e}^{4}+315\,\sqrt{ \left ( ae-bd \right ) b}{x}^{4}{b}^{4}{e}^{4}+1890\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \sqrt{ex+d}{x}^{2}{a}^{2}{b}^{3}{e}^{4}+1155\,\sqrt{ \left ( ae-bd \right ) b}{x}^{3}a{b}^{3}{e}^{4}+105\,\sqrt{ \left ( ae-bd \right ) b}{x}^{3}{b}^{4}d{e}^{3}+1260\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \sqrt{ex+d}x{a}^{3}{b}^{2}{e}^{4}+1533\,\sqrt{ \left ( ae-bd \right ) b}{x}^{2}{a}^{2}{b}^{2}{e}^{4}+399\,\sqrt{ \left ( ae-bd \right ) b}{x}^{2}a{b}^{3}d{e}^{3}-42\,\sqrt{ \left ( ae-bd \right ) b}{x}^{2}{b}^{4}{d}^{2}{e}^{2}+315\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \sqrt{ex+d}{a}^{4}b{e}^{4}+837\,\sqrt{ \left ( ae-bd \right ) b}x{a}^{3}b{e}^{4}+555\,\sqrt{ \left ( ae-bd \right ) b}x{a}^{2}{b}^{2}d{e}^{3}-156\,\sqrt{ \left ( ae-bd \right ) b}xa{b}^{3}{d}^{2}{e}^{2}+24\,\sqrt{ \left ( ae-bd \right ) b}x{b}^{4}{d}^{3}e+128\,\sqrt{ \left ( ae-bd \right ) b}{a}^{4}{e}^{4}+325\,\sqrt{ \left ( ae-bd \right ) b}{a}^{3}bd{e}^{3}-210\,\sqrt{ \left ( ae-bd \right ) b}{a}^{2}{b}^{2}{d}^{2}{e}^{2}+88\,\sqrt{ \left ( ae-bd \right ) b}a{b}^{3}{d}^{3}e-16\,\sqrt{ \left ( ae-bd \right ) b}{b}^{4}{d}^{4} \right ){\frac{1}{\sqrt{ex+d}}}{\frac{1}{\sqrt{ \left ( ae-bd \right ) b}}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x)

[Out]

-1/64*(315*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*(e*x+d)^(1/2)*x^4*b^5*e^4+1260*arctan(b*(e*x+d)^(1/2)/(
(a*e-b*d)*b)^(1/2))*(e*x+d)^(1/2)*x^3*a*b^4*e^4+315*((a*e-b*d)*b)^(1/2)*x^4*b^4*e^4+1890*arctan(b*(e*x+d)^(1/2
)/((a*e-b*d)*b)^(1/2))*(e*x+d)^(1/2)*x^2*a^2*b^3*e^4+1155*((a*e-b*d)*b)^(1/2)*x^3*a*b^3*e^4+105*((a*e-b*d)*b)^
(1/2)*x^3*b^4*d*e^3+1260*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*(e*x+d)^(1/2)*x*a^3*b^2*e^4+1533*((a*e-b*
d)*b)^(1/2)*x^2*a^2*b^2*e^4+399*((a*e-b*d)*b)^(1/2)*x^2*a*b^3*d*e^3-42*((a*e-b*d)*b)^(1/2)*x^2*b^4*d^2*e^2+315
*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*(e*x+d)^(1/2)*a^4*b*e^4+837*((a*e-b*d)*b)^(1/2)*x*a^3*b*e^4+555*(
(a*e-b*d)*b)^(1/2)*x*a^2*b^2*d*e^3-156*((a*e-b*d)*b)^(1/2)*x*a*b^3*d^2*e^2+24*((a*e-b*d)*b)^(1/2)*x*b^4*d^3*e+
128*((a*e-b*d)*b)^(1/2)*a^4*e^4+325*((a*e-b*d)*b)^(1/2)*a^3*b*d*e^3-210*((a*e-b*d)*b)^(1/2)*a^2*b^2*d^2*e^2+88
*((a*e-b*d)*b)^(1/2)*a*b^3*d^3*e-16*((a*e-b*d)*b)^(1/2)*b^4*d^4)*(b*x+a)/((a*e-b*d)*b)^(1/2)/(e*x+d)^(1/2)/(a*
e-b*d)^5/((b*x+a)^2)^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac{5}{2}}{\left (e x + d\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b^2*x^2 + 2*a*b*x + a^2)^(5/2)*(e*x + d)^(3/2)), x)

________________________________________________________________________________________

Fricas [B]  time = 2.01033, size = 3549, normalized size = 10.79 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="fricas")

[Out]

[-1/128*(315*(b^4*e^5*x^5 + a^4*d*e^4 + (b^4*d*e^4 + 4*a*b^3*e^5)*x^4 + 2*(2*a*b^3*d*e^4 + 3*a^2*b^2*e^5)*x^3
+ 2*(3*a^2*b^2*d*e^4 + 2*a^3*b*e^5)*x^2 + (4*a^3*b*d*e^4 + a^4*e^5)*x)*sqrt(b/(b*d - a*e))*log((b*e*x + 2*b*d
- a*e + 2*(b*d - a*e)*sqrt(e*x + d)*sqrt(b/(b*d - a*e)))/(b*x + a)) - 2*(315*b^4*e^4*x^4 - 16*b^4*d^4 + 88*a*b
^3*d^3*e - 210*a^2*b^2*d^2*e^2 + 325*a^3*b*d*e^3 + 128*a^4*e^4 + 105*(b^4*d*e^3 + 11*a*b^3*e^4)*x^3 - 21*(2*b^
4*d^2*e^2 - 19*a*b^3*d*e^3 - 73*a^2*b^2*e^4)*x^2 + 3*(8*b^4*d^3*e - 52*a*b^3*d^2*e^2 + 185*a^2*b^2*d*e^3 + 279
*a^3*b*e^4)*x)*sqrt(e*x + d))/(a^4*b^5*d^6 - 5*a^5*b^4*d^5*e + 10*a^6*b^3*d^4*e^2 - 10*a^7*b^2*d^3*e^3 + 5*a^8
*b*d^2*e^4 - a^9*d*e^5 + (b^9*d^5*e - 5*a*b^8*d^4*e^2 + 10*a^2*b^7*d^3*e^3 - 10*a^3*b^6*d^2*e^4 + 5*a^4*b^5*d*
e^5 - a^5*b^4*e^6)*x^5 + (b^9*d^6 - a*b^8*d^5*e - 10*a^2*b^7*d^4*e^2 + 30*a^3*b^6*d^3*e^3 - 35*a^4*b^5*d^2*e^4
+ 19*a^5*b^4*d*e^5 - 4*a^6*b^3*e^6)*x^4 + 2*(2*a*b^8*d^6 - 7*a^2*b^7*d^5*e + 5*a^3*b^6*d^4*e^2 + 10*a^4*b^5*d
^3*e^3 - 20*a^5*b^4*d^2*e^4 + 13*a^6*b^3*d*e^5 - 3*a^7*b^2*e^6)*x^3 + 2*(3*a^2*b^7*d^6 - 13*a^3*b^6*d^5*e + 20
*a^4*b^5*d^4*e^2 - 10*a^5*b^4*d^3*e^3 - 5*a^6*b^3*d^2*e^4 + 7*a^7*b^2*d*e^5 - 2*a^8*b*e^6)*x^2 + (4*a^3*b^6*d^
6 - 19*a^4*b^5*d^5*e + 35*a^5*b^4*d^4*e^2 - 30*a^6*b^3*d^3*e^3 + 10*a^7*b^2*d^2*e^4 + a^8*b*d*e^5 - a^9*e^6)*x
), -1/64*(315*(b^4*e^5*x^5 + a^4*d*e^4 + (b^4*d*e^4 + 4*a*b^3*e^5)*x^4 + 2*(2*a*b^3*d*e^4 + 3*a^2*b^2*e^5)*x^3
+ 2*(3*a^2*b^2*d*e^4 + 2*a^3*b*e^5)*x^2 + (4*a^3*b*d*e^4 + a^4*e^5)*x)*sqrt(-b/(b*d - a*e))*arctan(-(b*d - a*
e)*sqrt(e*x + d)*sqrt(-b/(b*d - a*e))/(b*e*x + b*d)) - (315*b^4*e^4*x^4 - 16*b^4*d^4 + 88*a*b^3*d^3*e - 210*a^
2*b^2*d^2*e^2 + 325*a^3*b*d*e^3 + 128*a^4*e^4 + 105*(b^4*d*e^3 + 11*a*b^3*e^4)*x^3 - 21*(2*b^4*d^2*e^2 - 19*a*
b^3*d*e^3 - 73*a^2*b^2*e^4)*x^2 + 3*(8*b^4*d^3*e - 52*a*b^3*d^2*e^2 + 185*a^2*b^2*d*e^3 + 279*a^3*b*e^4)*x)*sq
rt(e*x + d))/(a^4*b^5*d^6 - 5*a^5*b^4*d^5*e + 10*a^6*b^3*d^4*e^2 - 10*a^7*b^2*d^3*e^3 + 5*a^8*b*d^2*e^4 - a^9*
d*e^5 + (b^9*d^5*e - 5*a*b^8*d^4*e^2 + 10*a^2*b^7*d^3*e^3 - 10*a^3*b^6*d^2*e^4 + 5*a^4*b^5*d*e^5 - a^5*b^4*e^6
)*x^5 + (b^9*d^6 - a*b^8*d^5*e - 10*a^2*b^7*d^4*e^2 + 30*a^3*b^6*d^3*e^3 - 35*a^4*b^5*d^2*e^4 + 19*a^5*b^4*d*e
^5 - 4*a^6*b^3*e^6)*x^4 + 2*(2*a*b^8*d^6 - 7*a^2*b^7*d^5*e + 5*a^3*b^6*d^4*e^2 + 10*a^4*b^5*d^3*e^3 - 20*a^5*b
^4*d^2*e^4 + 13*a^6*b^3*d*e^5 - 3*a^7*b^2*e^6)*x^3 + 2*(3*a^2*b^7*d^6 - 13*a^3*b^6*d^5*e + 20*a^4*b^5*d^4*e^2
- 10*a^5*b^4*d^3*e^3 - 5*a^6*b^3*d^2*e^4 + 7*a^7*b^2*d*e^5 - 2*a^8*b*e^6)*x^2 + (4*a^3*b^6*d^6 - 19*a^4*b^5*d^
5*e + 35*a^5*b^4*d^4*e^2 - 30*a^6*b^3*d^3*e^3 + 10*a^7*b^2*d^2*e^4 + a^8*b*d*e^5 - a^9*e^6)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (d + e x\right )^{\frac{3}{2}} \left (\left (a + b x\right )^{2}\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(3/2)/(b**2*x**2+2*a*b*x+a**2)**(5/2),x)

[Out]

Integral(1/((d + e*x)**(3/2)*((a + b*x)**2)**(5/2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.34138, size = 1129, normalized size = 3.43 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(3/2)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="giac")

[Out]

315/64*b*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))*e^4/((b^5*d^5*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 5*a*b
^4*d^4*e*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 10*a^2*b^3*d^3*e^2*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 10*a^3*b
^2*d^2*e^3*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 5*a^4*b*d*e^4*sgn((x*e + d)*b*e - b*d*e + a*e^2) - a^5*e^5*sgn
((x*e + d)*b*e - b*d*e + a*e^2))*sqrt(-b^2*d + a*b*e)) + 2*e^4/((b^5*d^5*sgn((x*e + d)*b*e - b*d*e + a*e^2) -
5*a*b^4*d^4*e*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 10*a^2*b^3*d^3*e^2*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 10*
a^3*b^2*d^2*e^3*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 5*a^4*b*d*e^4*sgn((x*e + d)*b*e - b*d*e + a*e^2) - a^5*e^
5*sgn((x*e + d)*b*e - b*d*e + a*e^2))*sqrt(x*e + d)) + 1/64*(187*(x*e + d)^(7/2)*b^4*e^4 - 643*(x*e + d)^(5/2)
*b^4*d*e^4 + 765*(x*e + d)^(3/2)*b^4*d^2*e^4 - 325*sqrt(x*e + d)*b^4*d^3*e^4 + 643*(x*e + d)^(5/2)*a*b^3*e^5 -
1530*(x*e + d)^(3/2)*a*b^3*d*e^5 + 975*sqrt(x*e + d)*a*b^3*d^2*e^5 + 765*(x*e + d)^(3/2)*a^2*b^2*e^6 - 975*sq
rt(x*e + d)*a^2*b^2*d*e^6 + 325*sqrt(x*e + d)*a^3*b*e^7)/((b^5*d^5*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 5*a*b^
4*d^4*e*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 10*a^2*b^3*d^3*e^2*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 10*a^3*b^
2*d^2*e^3*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 5*a^4*b*d*e^4*sgn((x*e + d)*b*e - b*d*e + a*e^2) - a^5*e^5*sgn(
(x*e + d)*b*e - b*d*e + a*e^2))*((x*e + d)*b - b*d + a*e)^4)