### 3.1719 $$\int \frac{1}{(d+e x)^{7/2} (a^2+2 a b x+b^2 x^2)^{3/2}} \, dx$$

Optimal. Leaf size=329 $\frac{63 b^2 e^2 (a+b x)}{4 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^5}+\frac{21 b e^2 (a+b x)}{4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^4}+\frac{63 e^2 (a+b x)}{20 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)^3}-\frac{63 b^{5/2} e^2 (a+b x) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{4 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^{11/2}}-\frac{1}{2 (a+b x) \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)}+\frac{9 e}{4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)^2}$

[Out]

(9*e)/(4*(b*d - a*e)^2*(d + e*x)^(5/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - 1/(2*(b*d - a*e)*(a + b*x)*(d + e*x)^(
5/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (63*e^2*(a + b*x))/(20*(b*d - a*e)^3*(d + e*x)^(5/2)*Sqrt[a^2 + 2*a*b*x
+ b^2*x^2]) + (21*b*e^2*(a + b*x))/(4*(b*d - a*e)^4*(d + e*x)^(3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (63*b^2*e
^2*(a + b*x))/(4*(b*d - a*e)^5*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (63*b^(5/2)*e^2*(a + b*x)*ArcTan
h[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(4*(b*d - a*e)^(11/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.160639, antiderivative size = 329, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 4, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.133, Rules used = {646, 51, 63, 208} $\frac{63 b^2 e^2 (a+b x)}{4 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^5}+\frac{21 b e^2 (a+b x)}{4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^4}+\frac{63 e^2 (a+b x)}{20 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)^3}-\frac{63 b^{5/2} e^2 (a+b x) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{4 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^{11/2}}-\frac{1}{2 (a+b x) \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)}+\frac{9 e}{4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^(7/2)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2)),x]

[Out]

(9*e)/(4*(b*d - a*e)^2*(d + e*x)^(5/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - 1/(2*(b*d - a*e)*(a + b*x)*(d + e*x)^(
5/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (63*e^2*(a + b*x))/(20*(b*d - a*e)^3*(d + e*x)^(5/2)*Sqrt[a^2 + 2*a*b*x
+ b^2*x^2]) + (21*b*e^2*(a + b*x))/(4*(b*d - a*e)^4*(d + e*x)^(3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (63*b^2*e
^2*(a + b*x))/(4*(b*d - a*e)^5*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (63*b^(5/2)*e^2*(a + b*x)*ArcTan
h[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(4*(b*d - a*e)^(11/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{7/2} \left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx &=\frac{\left (b^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right )^3 (d+e x)^{7/2}} \, dx}{\sqrt{a^2+2 a b x+b^2 x^2}}\\ &=-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{\left (9 b e \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right )^2 (d+e x)^{7/2}} \, dx}{4 (b d-a e) \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{9 e}{4 (b d-a e)^2 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (63 e^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right ) (d+e x)^{7/2}} \, dx}{8 (b d-a e)^2 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{9 e}{4 (b d-a e)^2 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{63 e^2 (a+b x)}{20 (b d-a e)^3 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (63 b e^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right ) (d+e x)^{5/2}} \, dx}{8 (b d-a e)^3 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{9 e}{4 (b d-a e)^2 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{63 e^2 (a+b x)}{20 (b d-a e)^3 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{21 b e^2 (a+b x)}{4 (b d-a e)^4 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (63 b^2 e^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right ) (d+e x)^{3/2}} \, dx}{8 (b d-a e)^4 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{9 e}{4 (b d-a e)^2 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{63 e^2 (a+b x)}{20 (b d-a e)^3 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{21 b e^2 (a+b x)}{4 (b d-a e)^4 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{63 b^2 e^2 (a+b x)}{4 (b d-a e)^5 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (63 b^3 e^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right ) \sqrt{d+e x}} \, dx}{8 (b d-a e)^5 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{9 e}{4 (b d-a e)^2 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{63 e^2 (a+b x)}{20 (b d-a e)^3 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{21 b e^2 (a+b x)}{4 (b d-a e)^4 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{63 b^2 e^2 (a+b x)}{4 (b d-a e)^5 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (63 b^3 e \left (a b+b^2 x\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a b-\frac{b^2 d}{e}+\frac{b^2 x^2}{e}} \, dx,x,\sqrt{d+e x}\right )}{4 (b d-a e)^5 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{9 e}{4 (b d-a e)^2 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{63 e^2 (a+b x)}{20 (b d-a e)^3 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{21 b e^2 (a+b x)}{4 (b d-a e)^4 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{63 b^2 e^2 (a+b x)}{4 (b d-a e)^5 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{63 b^{5/2} e^2 (a+b x) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{4 (b d-a e)^{11/2} \sqrt{a^2+2 a b x+b^2 x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0273192, size = 67, normalized size = 0.2 $\frac{2 e^2 (a+b x) \, _2F_1\left (-\frac{5}{2},3;-\frac{3}{2};\frac{b (d+e x)}{b d-a e}\right )}{5 \sqrt{(a+b x)^2} (d+e x)^{5/2} (b d-a e)^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)^(7/2)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2)),x]

[Out]

(2*e^2*(a + b*x)*Hypergeometric2F1[-5/2, 3, -3/2, (b*(d + e*x))/(b*d - a*e)])/(5*(b*d - a*e)^3*Sqrt[(a + b*x)^
2]*(d + e*x)^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.307, size = 518, normalized size = 1.6 \begin{align*} -{\frac{bx+a}{20\, \left ( ae-bd \right ) ^{5}} \left ( 315\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \left ( ex+d \right ) ^{5/2}{x}^{2}{b}^{5}{e}^{2}+630\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \left ( ex+d \right ) ^{5/2}xa{b}^{4}{e}^{2}+315\,\sqrt{ \left ( ae-bd \right ) b}{x}^{4}{b}^{4}{e}^{4}+315\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \left ( ex+d \right ) ^{5/2}{a}^{2}{b}^{3}{e}^{2}+525\,\sqrt{ \left ( ae-bd \right ) b}{x}^{3}a{b}^{3}{e}^{4}+735\,\sqrt{ \left ( ae-bd \right ) b}{x}^{3}{b}^{4}d{e}^{3}+168\,\sqrt{ \left ( ae-bd \right ) b}{x}^{2}{a}^{2}{b}^{2}{e}^{4}+1239\,\sqrt{ \left ( ae-bd \right ) b}{x}^{2}a{b}^{3}d{e}^{3}+483\,\sqrt{ \left ( ae-bd \right ) b}{x}^{2}{b}^{4}{d}^{2}{e}^{2}-24\,\sqrt{ \left ( ae-bd \right ) b}x{a}^{3}b{e}^{4}+408\,\sqrt{ \left ( ae-bd \right ) b}x{a}^{2}{b}^{2}d{e}^{3}+831\,\sqrt{ \left ( ae-bd \right ) b}xa{b}^{3}{d}^{2}{e}^{2}+45\,\sqrt{ \left ( ae-bd \right ) b}x{b}^{4}{d}^{3}e+8\,\sqrt{ \left ( ae-bd \right ) b}{a}^{4}{e}^{4}-56\,\sqrt{ \left ( ae-bd \right ) b}{a}^{3}bd{e}^{3}+288\,\sqrt{ \left ( ae-bd \right ) b}{a}^{2}{b}^{2}{d}^{2}{e}^{2}+85\,\sqrt{ \left ( ae-bd \right ) b}a{b}^{3}{d}^{3}e-10\,\sqrt{ \left ( ae-bd \right ) b}{b}^{4}{d}^{4} \right ){\frac{1}{\sqrt{ \left ( ae-bd \right ) b}}} \left ( ex+d \right ) ^{-{\frac{5}{2}}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x)

[Out]

-1/20*(315*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*(e*x+d)^(5/2)*x^2*b^5*e^2+630*arctan(b*(e*x+d)^(1/2)/((
a*e-b*d)*b)^(1/2))*(e*x+d)^(5/2)*x*a*b^4*e^2+315*((a*e-b*d)*b)^(1/2)*x^4*b^4*e^4+315*arctan(b*(e*x+d)^(1/2)/((
a*e-b*d)*b)^(1/2))*(e*x+d)^(5/2)*a^2*b^3*e^2+525*((a*e-b*d)*b)^(1/2)*x^3*a*b^3*e^4+735*((a*e-b*d)*b)^(1/2)*x^3
*b^4*d*e^3+168*((a*e-b*d)*b)^(1/2)*x^2*a^2*b^2*e^4+1239*((a*e-b*d)*b)^(1/2)*x^2*a*b^3*d*e^3+483*((a*e-b*d)*b)^
(1/2)*x^2*b^4*d^2*e^2-24*((a*e-b*d)*b)^(1/2)*x*a^3*b*e^4+408*((a*e-b*d)*b)^(1/2)*x*a^2*b^2*d*e^3+831*((a*e-b*d
)*b)^(1/2)*x*a*b^3*d^2*e^2+45*((a*e-b*d)*b)^(1/2)*x*b^4*d^3*e+8*((a*e-b*d)*b)^(1/2)*a^4*e^4-56*((a*e-b*d)*b)^(
1/2)*a^3*b*d*e^3+288*((a*e-b*d)*b)^(1/2)*a^2*b^2*d^2*e^2+85*((a*e-b*d)*b)^(1/2)*a*b^3*d^3*e-10*((a*e-b*d)*b)^(
1/2)*b^4*d^4)*(b*x+a)/((a*e-b*d)*b)^(1/2)/(e*x+d)^(5/2)/(a*e-b*d)^5/((b*x+a)^2)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac{3}{2}}{\left (e x + d\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b^2*x^2 + 2*a*b*x + a^2)^(3/2)*(e*x + d)^(7/2)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.91255, size = 3753, normalized size = 11.41 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/40*(315*(b^4*e^5*x^5 + a^2*b^2*d^3*e^2 + (3*b^4*d*e^4 + 2*a*b^3*e^5)*x^4 + (3*b^4*d^2*e^3 + 6*a*b^3*d*e^4
+ a^2*b^2*e^5)*x^3 + (b^4*d^3*e^2 + 6*a*b^3*d^2*e^3 + 3*a^2*b^2*d*e^4)*x^2 + (2*a*b^3*d^3*e^2 + 3*a^2*b^2*d^2*
e^3)*x)*sqrt(b/(b*d - a*e))*log((b*e*x + 2*b*d - a*e + 2*(b*d - a*e)*sqrt(e*x + d)*sqrt(b/(b*d - a*e)))/(b*x +
a)) - 2*(315*b^4*e^4*x^4 - 10*b^4*d^4 + 85*a*b^3*d^3*e + 288*a^2*b^2*d^2*e^2 - 56*a^3*b*d*e^3 + 8*a^4*e^4 + 1
05*(7*b^4*d*e^3 + 5*a*b^3*e^4)*x^3 + 21*(23*b^4*d^2*e^2 + 59*a*b^3*d*e^3 + 8*a^2*b^2*e^4)*x^2 + 3*(15*b^4*d^3*
e + 277*a*b^3*d^2*e^2 + 136*a^2*b^2*d*e^3 - 8*a^3*b*e^4)*x)*sqrt(e*x + d))/(a^2*b^5*d^8 - 5*a^3*b^4*d^7*e + 10
*a^4*b^3*d^6*e^2 - 10*a^5*b^2*d^5*e^3 + 5*a^6*b*d^4*e^4 - a^7*d^3*e^5 + (b^7*d^5*e^3 - 5*a*b^6*d^4*e^4 + 10*a^
2*b^5*d^3*e^5 - 10*a^3*b^4*d^2*e^6 + 5*a^4*b^3*d*e^7 - a^5*b^2*e^8)*x^5 + (3*b^7*d^6*e^2 - 13*a*b^6*d^5*e^3 +
20*a^2*b^5*d^4*e^4 - 10*a^3*b^4*d^3*e^5 - 5*a^4*b^3*d^2*e^6 + 7*a^5*b^2*d*e^7 - 2*a^6*b*e^8)*x^4 + (3*b^7*d^7*
e - 9*a*b^6*d^6*e^2 + a^2*b^5*d^5*e^3 + 25*a^3*b^4*d^4*e^4 - 35*a^4*b^3*d^3*e^5 + 17*a^5*b^2*d^2*e^6 - a^6*b*d
*e^7 - a^7*e^8)*x^3 + (b^7*d^8 + a*b^6*d^7*e - 17*a^2*b^5*d^6*e^2 + 35*a^3*b^4*d^5*e^3 - 25*a^4*b^3*d^4*e^4 -
a^5*b^2*d^3*e^5 + 9*a^6*b*d^2*e^6 - 3*a^7*d*e^7)*x^2 + (2*a*b^6*d^8 - 7*a^2*b^5*d^7*e + 5*a^3*b^4*d^6*e^2 + 10
*a^4*b^3*d^5*e^3 - 20*a^5*b^2*d^4*e^4 + 13*a^6*b*d^3*e^5 - 3*a^7*d^2*e^6)*x), -1/20*(315*(b^4*e^5*x^5 + a^2*b^
2*d^3*e^2 + (3*b^4*d*e^4 + 2*a*b^3*e^5)*x^4 + (3*b^4*d^2*e^3 + 6*a*b^3*d*e^4 + a^2*b^2*e^5)*x^3 + (b^4*d^3*e^2
+ 6*a*b^3*d^2*e^3 + 3*a^2*b^2*d*e^4)*x^2 + (2*a*b^3*d^3*e^2 + 3*a^2*b^2*d^2*e^3)*x)*sqrt(-b/(b*d - a*e))*arct
an(-(b*d - a*e)*sqrt(e*x + d)*sqrt(-b/(b*d - a*e))/(b*e*x + b*d)) - (315*b^4*e^4*x^4 - 10*b^4*d^4 + 85*a*b^3*d
^3*e + 288*a^2*b^2*d^2*e^2 - 56*a^3*b*d*e^3 + 8*a^4*e^4 + 105*(7*b^4*d*e^3 + 5*a*b^3*e^4)*x^3 + 21*(23*b^4*d^2
*e^2 + 59*a*b^3*d*e^3 + 8*a^2*b^2*e^4)*x^2 + 3*(15*b^4*d^3*e + 277*a*b^3*d^2*e^2 + 136*a^2*b^2*d*e^3 - 8*a^3*b
*e^4)*x)*sqrt(e*x + d))/(a^2*b^5*d^8 - 5*a^3*b^4*d^7*e + 10*a^4*b^3*d^6*e^2 - 10*a^5*b^2*d^5*e^3 + 5*a^6*b*d^4
*e^4 - a^7*d^3*e^5 + (b^7*d^5*e^3 - 5*a*b^6*d^4*e^4 + 10*a^2*b^5*d^3*e^5 - 10*a^3*b^4*d^2*e^6 + 5*a^4*b^3*d*e^
7 - a^5*b^2*e^8)*x^5 + (3*b^7*d^6*e^2 - 13*a*b^6*d^5*e^3 + 20*a^2*b^5*d^4*e^4 - 10*a^3*b^4*d^3*e^5 - 5*a^4*b^3
*d^2*e^6 + 7*a^5*b^2*d*e^7 - 2*a^6*b*e^8)*x^4 + (3*b^7*d^7*e - 9*a*b^6*d^6*e^2 + a^2*b^5*d^5*e^3 + 25*a^3*b^4*
d^4*e^4 - 35*a^4*b^3*d^3*e^5 + 17*a^5*b^2*d^2*e^6 - a^6*b*d*e^7 - a^7*e^8)*x^3 + (b^7*d^8 + a*b^6*d^7*e - 17*a
^2*b^5*d^6*e^2 + 35*a^3*b^4*d^5*e^3 - 25*a^4*b^3*d^4*e^4 - a^5*b^2*d^3*e^5 + 9*a^6*b*d^2*e^6 - 3*a^7*d*e^7)*x^
2 + (2*a*b^6*d^8 - 7*a^2*b^5*d^7*e + 5*a^3*b^4*d^6*e^2 + 10*a^4*b^3*d^5*e^3 - 20*a^5*b^2*d^4*e^4 + 13*a^6*b*d^
3*e^5 - 3*a^7*d^2*e^6)*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(7/2)/(b**2*x**2+2*a*b*x+a**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.29158, size = 1046, normalized size = 3.18 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="giac")

[Out]

63/4*b^3*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))*e^2/((b^5*d^5*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 5*a*b
^4*d^4*e*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 10*a^2*b^3*d^3*e^2*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 10*a^3*b
^2*d^2*e^3*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 5*a^4*b*d*e^4*sgn((x*e + d)*b*e - b*d*e + a*e^2) - a^5*e^5*sgn
((x*e + d)*b*e - b*d*e + a*e^2))*sqrt(-b^2*d + a*b*e)) + 1/4*(15*(x*e + d)^(3/2)*b^4*e^2 - 17*sqrt(x*e + d)*b^
4*d*e^2 + 17*sqrt(x*e + d)*a*b^3*e^3)/((b^5*d^5*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 5*a*b^4*d^4*e*sgn((x*e +
d)*b*e - b*d*e + a*e^2) + 10*a^2*b^3*d^3*e^2*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 10*a^3*b^2*d^2*e^3*sgn((x*e
+ d)*b*e - b*d*e + a*e^2) + 5*a^4*b*d*e^4*sgn((x*e + d)*b*e - b*d*e + a*e^2) - a^5*e^5*sgn((x*e + d)*b*e - b*d
*e + a*e^2))*((x*e + d)*b - b*d + a*e)^2) + 2/5*(30*(x*e + d)^2*b^2*e^2 + 5*(x*e + d)*b^2*d*e^2 + b^2*d^2*e^2
- 5*(x*e + d)*a*b*e^3 - 2*a*b*d*e^3 + a^2*e^4)/((b^5*d^5*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 5*a*b^4*d^4*e*sg
n((x*e + d)*b*e - b*d*e + a*e^2) + 10*a^2*b^3*d^3*e^2*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 10*a^3*b^2*d^2*e^3*
sgn((x*e + d)*b*e - b*d*e + a*e^2) + 5*a^4*b*d*e^4*sgn((x*e + d)*b*e - b*d*e + a*e^2) - a^5*e^5*sgn((x*e + d)*
b*e - b*d*e + a*e^2))*(x*e + d)^(5/2))