### 3.1718 $$\int \frac{1}{(d+e x)^{5/2} (a^2+2 a b x+b^2 x^2)^{3/2}} \, dx$$

Optimal. Leaf size=275 $\frac{35 b e^2 (a+b x)}{4 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^4}+\frac{35 e^2 (a+b x)}{12 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^3}-\frac{35 b^{3/2} e^2 (a+b x) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{4 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^{9/2}}+\frac{7 e}{4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^2}-\frac{1}{2 (a+b x) \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)}$

[Out]

(7*e)/(4*(b*d - a*e)^2*(d + e*x)^(3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - 1/(2*(b*d - a*e)*(a + b*x)*(d + e*x)^(
3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (35*e^2*(a + b*x))/(12*(b*d - a*e)^3*(d + e*x)^(3/2)*Sqrt[a^2 + 2*a*b*x
+ b^2*x^2]) + (35*b*e^2*(a + b*x))/(4*(b*d - a*e)^4*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (35*b^(3/2)
*e^2*(a + b*x)*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(4*(b*d - a*e)^(9/2)*Sqrt[a^2 + 2*a*b*x + b^2
*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.124641, antiderivative size = 275, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.133, Rules used = {646, 51, 63, 208} $\frac{35 b e^2 (a+b x)}{4 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^4}+\frac{35 e^2 (a+b x)}{12 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^3}-\frac{35 b^{3/2} e^2 (a+b x) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{4 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^{9/2}}+\frac{7 e}{4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^2}-\frac{1}{2 (a+b x) \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^(5/2)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2)),x]

[Out]

(7*e)/(4*(b*d - a*e)^2*(d + e*x)^(3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - 1/(2*(b*d - a*e)*(a + b*x)*(d + e*x)^(
3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) + (35*e^2*(a + b*x))/(12*(b*d - a*e)^3*(d + e*x)^(3/2)*Sqrt[a^2 + 2*a*b*x
+ b^2*x^2]) + (35*b*e^2*(a + b*x))/(4*(b*d - a*e)^4*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]) - (35*b^(3/2)
*e^2*(a + b*x)*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(4*(b*d - a*e)^(9/2)*Sqrt[a^2 + 2*a*b*x + b^2
*x^2])

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^{5/2} \left (a^2+2 a b x+b^2 x^2\right )^{3/2}} \, dx &=\frac{\left (b^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right )^3 (d+e x)^{5/2}} \, dx}{\sqrt{a^2+2 a b x+b^2 x^2}}\\ &=-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{\left (7 b e \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right )^2 (d+e x)^{5/2}} \, dx}{4 (b d-a e) \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{7 e}{4 (b d-a e)^2 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (35 e^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right ) (d+e x)^{5/2}} \, dx}{8 (b d-a e)^2 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{7 e}{4 (b d-a e)^2 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{35 e^2 (a+b x)}{12 (b d-a e)^3 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (35 b e^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right ) (d+e x)^{3/2}} \, dx}{8 (b d-a e)^3 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{7 e}{4 (b d-a e)^2 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{35 e^2 (a+b x)}{12 (b d-a e)^3 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{35 b e^2 (a+b x)}{4 (b d-a e)^4 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (35 b^2 e^2 \left (a b+b^2 x\right )\right ) \int \frac{1}{\left (a b+b^2 x\right ) \sqrt{d+e x}} \, dx}{8 (b d-a e)^4 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{7 e}{4 (b d-a e)^2 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{35 e^2 (a+b x)}{12 (b d-a e)^3 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{35 b e^2 (a+b x)}{4 (b d-a e)^4 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{\left (35 b^2 e \left (a b+b^2 x\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a b-\frac{b^2 d}{e}+\frac{b^2 x^2}{e}} \, dx,x,\sqrt{d+e x}\right )}{4 (b d-a e)^4 \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{7 e}{4 (b d-a e)^2 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{1}{2 (b d-a e) (a+b x) (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{35 e^2 (a+b x)}{12 (b d-a e)^3 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}+\frac{35 b e^2 (a+b x)}{4 (b d-a e)^4 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}-\frac{35 b^{3/2} e^2 (a+b x) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{4 (b d-a e)^{9/2} \sqrt{a^2+2 a b x+b^2 x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0240417, size = 67, normalized size = 0.24 $\frac{2 e^2 (a+b x) \, _2F_1\left (-\frac{3}{2},3;-\frac{1}{2};\frac{b (d+e x)}{b d-a e}\right )}{3 \sqrt{(a+b x)^2} (d+e x)^{3/2} (b d-a e)^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)^(5/2)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2)),x]

[Out]

(2*e^2*(a + b*x)*Hypergeometric2F1[-3/2, 3, -1/2, (b*(d + e*x))/(b*d - a*e)])/(3*(b*d - a*e)^3*Sqrt[(a + b*x)^
2]*(d + e*x)^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.279, size = 388, normalized size = 1.4 \begin{align*}{\frac{bx+a}{12\, \left ( ae-bd \right ) ^{4}} \left ( 105\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \left ( ex+d \right ) ^{3/2}{x}^{2}{b}^{4}{e}^{2}+210\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \left ( ex+d \right ) ^{3/2}xa{b}^{3}{e}^{2}+105\,\sqrt{ \left ( ae-bd \right ) b}{x}^{3}{b}^{3}{e}^{3}+105\,\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) \left ( ex+d \right ) ^{3/2}{a}^{2}{b}^{2}{e}^{2}+175\,\sqrt{ \left ( ae-bd \right ) b}{x}^{2}a{b}^{2}{e}^{3}+140\,\sqrt{ \left ( ae-bd \right ) b}{x}^{2}{b}^{3}d{e}^{2}+56\,\sqrt{ \left ( ae-bd \right ) b}x{a}^{2}b{e}^{3}+238\,\sqrt{ \left ( ae-bd \right ) b}xa{b}^{2}d{e}^{2}+21\,\sqrt{ \left ( ae-bd \right ) b}x{b}^{3}{d}^{2}e-8\,\sqrt{ \left ( ae-bd \right ) b}{a}^{3}{e}^{3}+80\,\sqrt{ \left ( ae-bd \right ) b}{a}^{2}bd{e}^{2}+39\,\sqrt{ \left ( ae-bd \right ) b}a{b}^{2}{d}^{2}e-6\,\sqrt{ \left ( ae-bd \right ) b}{b}^{3}{d}^{3} \right ){\frac{1}{\sqrt{ \left ( ae-bd \right ) b}}} \left ( ex+d \right ) ^{-{\frac{3}{2}}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(5/2)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x)

[Out]

1/12*(105*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*(e*x+d)^(3/2)*x^2*b^4*e^2+210*arctan(b*(e*x+d)^(1/2)/((a
*e-b*d)*b)^(1/2))*(e*x+d)^(3/2)*x*a*b^3*e^2+105*((a*e-b*d)*b)^(1/2)*x^3*b^3*e^3+105*arctan(b*(e*x+d)^(1/2)/((a
*e-b*d)*b)^(1/2))*(e*x+d)^(3/2)*a^2*b^2*e^2+175*((a*e-b*d)*b)^(1/2)*x^2*a*b^2*e^3+140*((a*e-b*d)*b)^(1/2)*x^2*
b^3*d*e^2+56*((a*e-b*d)*b)^(1/2)*x*a^2*b*e^3+238*((a*e-b*d)*b)^(1/2)*x*a*b^2*d*e^2+21*((a*e-b*d)*b)^(1/2)*x*b^
3*d^2*e-8*((a*e-b*d)*b)^(1/2)*a^3*e^3+80*((a*e-b*d)*b)^(1/2)*a^2*b*d*e^2+39*((a*e-b*d)*b)^(1/2)*a*b^2*d^2*e-6*
((a*e-b*d)*b)^(1/2)*b^3*d^3)*(b*x+a)/((a*e-b*d)*b)^(1/2)/(e*x+d)^(3/2)/(a*e-b*d)^4/((b*x+a)^2)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac{3}{2}}{\left (e x + d\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(5/2)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b^2*x^2 + 2*a*b*x + a^2)^(3/2)*(e*x + d)^(5/2)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.80953, size = 2472, normalized size = 8.99 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(5/2)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="fricas")

[Out]

[1/24*(105*(b^3*e^4*x^4 + a^2*b*d^2*e^2 + 2*(b^3*d*e^3 + a*b^2*e^4)*x^3 + (b^3*d^2*e^2 + 4*a*b^2*d*e^3 + a^2*b
*e^4)*x^2 + 2*(a*b^2*d^2*e^2 + a^2*b*d*e^3)*x)*sqrt(b/(b*d - a*e))*log((b*e*x + 2*b*d - a*e - 2*(b*d - a*e)*sq
rt(e*x + d)*sqrt(b/(b*d - a*e)))/(b*x + a)) + 2*(105*b^3*e^3*x^3 - 6*b^3*d^3 + 39*a*b^2*d^2*e + 80*a^2*b*d*e^2
- 8*a^3*e^3 + 35*(4*b^3*d*e^2 + 5*a*b^2*e^3)*x^2 + 7*(3*b^3*d^2*e + 34*a*b^2*d*e^2 + 8*a^2*b*e^3)*x)*sqrt(e*x
+ d))/(a^2*b^4*d^6 - 4*a^3*b^3*d^5*e + 6*a^4*b^2*d^4*e^2 - 4*a^5*b*d^3*e^3 + a^6*d^2*e^4 + (b^6*d^4*e^2 - 4*a
*b^5*d^3*e^3 + 6*a^2*b^4*d^2*e^4 - 4*a^3*b^3*d*e^5 + a^4*b^2*e^6)*x^4 + 2*(b^6*d^5*e - 3*a*b^5*d^4*e^2 + 2*a^2
*b^4*d^3*e^3 + 2*a^3*b^3*d^2*e^4 - 3*a^4*b^2*d*e^5 + a^5*b*e^6)*x^3 + (b^6*d^6 - 9*a^2*b^4*d^4*e^2 + 16*a^3*b^
3*d^3*e^3 - 9*a^4*b^2*d^2*e^4 + a^6*e^6)*x^2 + 2*(a*b^5*d^6 - 3*a^2*b^4*d^5*e + 2*a^3*b^3*d^4*e^2 + 2*a^4*b^2*
d^3*e^3 - 3*a^5*b*d^2*e^4 + a^6*d*e^5)*x), -1/12*(105*(b^3*e^4*x^4 + a^2*b*d^2*e^2 + 2*(b^3*d*e^3 + a*b^2*e^4)
*x^3 + (b^3*d^2*e^2 + 4*a*b^2*d*e^3 + a^2*b*e^4)*x^2 + 2*(a*b^2*d^2*e^2 + a^2*b*d*e^3)*x)*sqrt(-b/(b*d - a*e))
*arctan(-(b*d - a*e)*sqrt(e*x + d)*sqrt(-b/(b*d - a*e))/(b*e*x + b*d)) - (105*b^3*e^3*x^3 - 6*b^3*d^3 + 39*a*b
^2*d^2*e + 80*a^2*b*d*e^2 - 8*a^3*e^3 + 35*(4*b^3*d*e^2 + 5*a*b^2*e^3)*x^2 + 7*(3*b^3*d^2*e + 34*a*b^2*d*e^2 +
8*a^2*b*e^3)*x)*sqrt(e*x + d))/(a^2*b^4*d^6 - 4*a^3*b^3*d^5*e + 6*a^4*b^2*d^4*e^2 - 4*a^5*b*d^3*e^3 + a^6*d^2
*e^4 + (b^6*d^4*e^2 - 4*a*b^5*d^3*e^3 + 6*a^2*b^4*d^2*e^4 - 4*a^3*b^3*d*e^5 + a^4*b^2*e^6)*x^4 + 2*(b^6*d^5*e
- 3*a*b^5*d^4*e^2 + 2*a^2*b^4*d^3*e^3 + 2*a^3*b^3*d^2*e^4 - 3*a^4*b^2*d*e^5 + a^5*b*e^6)*x^3 + (b^6*d^6 - 9*a^
2*b^4*d^4*e^2 + 16*a^3*b^3*d^3*e^3 - 9*a^4*b^2*d^2*e^4 + a^6*e^6)*x^2 + 2*(a*b^5*d^6 - 3*a^2*b^4*d^5*e + 2*a^3
*b^3*d^4*e^2 + 2*a^4*b^2*d^3*e^3 - 3*a^5*b*d^2*e^4 + a^6*d*e^5)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (d + e x\right )^{\frac{5}{2}} \left (\left (a + b x\right )^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(5/2)/(b**2*x**2+2*a*b*x+a**2)**(3/2),x)

[Out]

Integral(1/((d + e*x)**(5/2)*((a + b*x)**2)**(3/2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.27909, size = 844, normalized size = 3.07 \begin{align*} \frac{35 \, b^{2} \arctan \left (\frac{\sqrt{x e + d} b}{\sqrt{-b^{2} d + a b e}}\right ) e^{2}}{4 \,{\left (b^{4} d^{4} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) - 4 \, a b^{3} d^{3} e \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) + 6 \, a^{2} b^{2} d^{2} e^{2} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) - 4 \, a^{3} b d e^{3} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) + a^{4} e^{4} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right )\right )} \sqrt{-b^{2} d + a b e}} + \frac{2 \,{\left (9 \,{\left (x e + d\right )} b e^{2} + b d e^{2} - a e^{3}\right )}}{3 \,{\left (b^{4} d^{4} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) - 4 \, a b^{3} d^{3} e \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) + 6 \, a^{2} b^{2} d^{2} e^{2} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) - 4 \, a^{3} b d e^{3} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) + a^{4} e^{4} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right )\right )}{\left (x e + d\right )}^{\frac{3}{2}}} + \frac{11 \,{\left (x e + d\right )}^{\frac{3}{2}} b^{3} e^{2} - 13 \, \sqrt{x e + d} b^{3} d e^{2} + 13 \, \sqrt{x e + d} a b^{2} e^{3}}{4 \,{\left (b^{4} d^{4} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) - 4 \, a b^{3} d^{3} e \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) + 6 \, a^{2} b^{2} d^{2} e^{2} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) - 4 \, a^{3} b d e^{3} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right ) + a^{4} e^{4} \mathrm{sgn}\left ({\left (x e + d\right )} b e - b d e + a e^{2}\right )\right )}{\left ({\left (x e + d\right )} b - b d + a e\right )}^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(5/2)/(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="giac")

[Out]

35/4*b^2*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))*e^2/((b^4*d^4*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 4*a*b
^3*d^3*e*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 6*a^2*b^2*d^2*e^2*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 4*a^3*b*d
*e^3*sgn((x*e + d)*b*e - b*d*e + a*e^2) + a^4*e^4*sgn((x*e + d)*b*e - b*d*e + a*e^2))*sqrt(-b^2*d + a*b*e)) +
2/3*(9*(x*e + d)*b*e^2 + b*d*e^2 - a*e^3)/((b^4*d^4*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 4*a*b^3*d^3*e*sgn((x*
e + d)*b*e - b*d*e + a*e^2) + 6*a^2*b^2*d^2*e^2*sgn((x*e + d)*b*e - b*d*e + a*e^2) - 4*a^3*b*d*e^3*sgn((x*e +
d)*b*e - b*d*e + a*e^2) + a^4*e^4*sgn((x*e + d)*b*e - b*d*e + a*e^2))*(x*e + d)^(3/2)) + 1/4*(11*(x*e + d)^(3/
2)*b^3*e^2 - 13*sqrt(x*e + d)*b^3*d*e^2 + 13*sqrt(x*e + d)*a*b^2*e^3)/((b^4*d^4*sgn((x*e + d)*b*e - b*d*e + a*
e^2) - 4*a*b^3*d^3*e*sgn((x*e + d)*b*e - b*d*e + a*e^2) + 6*a^2*b^2*d^2*e^2*sgn((x*e + d)*b*e - b*d*e + a*e^2)
- 4*a^3*b*d*e^3*sgn((x*e + d)*b*e - b*d*e + a*e^2) + a^4*e^4*sgn((x*e + d)*b*e - b*d*e + a*e^2))*((x*e + d)*b
- b*d + a*e)^2)