### 3.1689 $$\int \frac{(a^2+2 a b x+b^2 x^2)^{3/2}}{(d+e x)^{7/2}} \, dx$$

Optimal. Leaf size=202 $\frac{2 b^3 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x}}{e^4 (a+b x)}+\frac{6 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)}{e^4 (a+b x) \sqrt{d+e x}}-\frac{2 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2}{e^4 (a+b x) (d+e x)^{3/2}}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{5 e^4 (a+b x) (d+e x)^{5/2}}$

[Out]

(2*(b*d - a*e)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*e^4*(a + b*x)*(d + e*x)^(5/2)) - (2*b*(b*d - a*e)^2*Sqrt[a^
2 + 2*a*b*x + b^2*x^2])/(e^4*(a + b*x)*(d + e*x)^(3/2)) + (6*b^2*(b*d - a*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e
^4*(a + b*x)*Sqrt[d + e*x]) + (2*b^3*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^4*(a + b*x))

________________________________________________________________________________________

Rubi [A]  time = 0.066247, antiderivative size = 202, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.067, Rules used = {646, 43} $\frac{2 b^3 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x}}{e^4 (a+b x)}+\frac{6 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)}{e^4 (a+b x) \sqrt{d+e x}}-\frac{2 b \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^2}{e^4 (a+b x) (d+e x)^{3/2}}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (b d-a e)^3}{5 e^4 (a+b x) (d+e x)^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^(7/2),x]

[Out]

(2*(b*d - a*e)^3*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*e^4*(a + b*x)*(d + e*x)^(5/2)) - (2*b*(b*d - a*e)^2*Sqrt[a^
2 + 2*a*b*x + b^2*x^2])/(e^4*(a + b*x)*(d + e*x)^(3/2)) + (6*b^2*(b*d - a*e)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e
^4*(a + b*x)*Sqrt[d + e*x]) + (2*b^3*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^4*(a + b*x))

Rule 646

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\left (a^2+2 a b x+b^2 x^2\right )^{3/2}}{(d+e x)^{7/2}} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \frac{\left (a b+b^2 x\right )^3}{(d+e x)^{7/2}} \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \left (-\frac{b^3 (b d-a e)^3}{e^3 (d+e x)^{7/2}}+\frac{3 b^4 (b d-a e)^2}{e^3 (d+e x)^{5/2}}-\frac{3 b^5 (b d-a e)}{e^3 (d+e x)^{3/2}}+\frac{b^6}{e^3 \sqrt{d+e x}}\right ) \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{2 (b d-a e)^3 \sqrt{a^2+2 a b x+b^2 x^2}}{5 e^4 (a+b x) (d+e x)^{5/2}}-\frac{2 b (b d-a e)^2 \sqrt{a^2+2 a b x+b^2 x^2}}{e^4 (a+b x) (d+e x)^{3/2}}+\frac{6 b^2 (b d-a e) \sqrt{a^2+2 a b x+b^2 x^2}}{e^4 (a+b x) \sqrt{d+e x}}+\frac{2 b^3 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}{e^4 (a+b x)}\\ \end{align*}

Mathematica [A]  time = 0.0647071, size = 118, normalized size = 0.58 $-\frac{2 \sqrt{(a+b x)^2} \left (a^2 b e^2 (2 d+5 e x)+a^3 e^3+a b^2 e \left (8 d^2+20 d e x+15 e^2 x^2\right )+b^3 \left (-\left (40 d^2 e x+16 d^3+30 d e^2 x^2+5 e^3 x^3\right )\right )\right )}{5 e^4 (a+b x) (d+e x)^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a^2 + 2*a*b*x + b^2*x^2)^(3/2)/(d + e*x)^(7/2),x]

[Out]

(-2*Sqrt[(a + b*x)^2]*(a^3*e^3 + a^2*b*e^2*(2*d + 5*e*x) + a*b^2*e*(8*d^2 + 20*d*e*x + 15*e^2*x^2) - b^3*(16*d
^3 + 40*d^2*e*x + 30*d*e^2*x^2 + 5*e^3*x^3)))/(5*e^4*(a + b*x)*(d + e*x)^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.153, size = 131, normalized size = 0.7 \begin{align*} -{\frac{-10\,{x}^{3}{b}^{3}{e}^{3}+30\,{x}^{2}a{b}^{2}{e}^{3}-60\,{x}^{2}{b}^{3}d{e}^{2}+10\,x{a}^{2}b{e}^{3}+40\,xa{b}^{2}d{e}^{2}-80\,x{b}^{3}{d}^{2}e+2\,{a}^{3}{e}^{3}+4\,d{e}^{2}{a}^{2}b+16\,a{b}^{2}{d}^{2}e-32\,{b}^{3}{d}^{3}}{5\, \left ( bx+a \right ) ^{3}{e}^{4}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{{\frac{3}{2}}} \left ( ex+d \right ) ^{-{\frac{5}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(7/2),x)

[Out]

-2/5/(e*x+d)^(5/2)*(-5*b^3*e^3*x^3+15*a*b^2*e^3*x^2-30*b^3*d*e^2*x^2+5*a^2*b*e^3*x+20*a*b^2*d*e^2*x-40*b^3*d^2
*e*x+a^3*e^3+2*a^2*b*d*e^2+8*a*b^2*d^2*e-16*b^3*d^3)*((b*x+a)^2)^(3/2)/e^4/(b*x+a)^3

________________________________________________________________________________________

Maxima [A]  time = 1.18217, size = 185, normalized size = 0.92 \begin{align*} \frac{2 \,{\left (5 \, b^{3} e^{3} x^{3} + 16 \, b^{3} d^{3} - 8 \, a b^{2} d^{2} e - 2 \, a^{2} b d e^{2} - a^{3} e^{3} + 15 \,{\left (2 \, b^{3} d e^{2} - a b^{2} e^{3}\right )} x^{2} + 5 \,{\left (8 \, b^{3} d^{2} e - 4 \, a b^{2} d e^{2} - a^{2} b e^{3}\right )} x\right )}}{5 \,{\left (e^{6} x^{2} + 2 \, d e^{5} x + d^{2} e^{4}\right )} \sqrt{e x + d}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(7/2),x, algorithm="maxima")

[Out]

2/5*(5*b^3*e^3*x^3 + 16*b^3*d^3 - 8*a*b^2*d^2*e - 2*a^2*b*d*e^2 - a^3*e^3 + 15*(2*b^3*d*e^2 - a*b^2*e^3)*x^2 +
5*(8*b^3*d^2*e - 4*a*b^2*d*e^2 - a^2*b*e^3)*x)/((e^6*x^2 + 2*d*e^5*x + d^2*e^4)*sqrt(e*x + d))

________________________________________________________________________________________

Fricas [A]  time = 1.64484, size = 298, normalized size = 1.48 \begin{align*} \frac{2 \,{\left (5 \, b^{3} e^{3} x^{3} + 16 \, b^{3} d^{3} - 8 \, a b^{2} d^{2} e - 2 \, a^{2} b d e^{2} - a^{3} e^{3} + 15 \,{\left (2 \, b^{3} d e^{2} - a b^{2} e^{3}\right )} x^{2} + 5 \,{\left (8 \, b^{3} d^{2} e - 4 \, a b^{2} d e^{2} - a^{2} b e^{3}\right )} x\right )} \sqrt{e x + d}}{5 \,{\left (e^{7} x^{3} + 3 \, d e^{6} x^{2} + 3 \, d^{2} e^{5} x + d^{3} e^{4}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(7/2),x, algorithm="fricas")

[Out]

2/5*(5*b^3*e^3*x^3 + 16*b^3*d^3 - 8*a*b^2*d^2*e - 2*a^2*b*d*e^2 - a^3*e^3 + 15*(2*b^3*d*e^2 - a*b^2*e^3)*x^2 +
5*(8*b^3*d^2*e - 4*a*b^2*d*e^2 - a^2*b*e^3)*x)*sqrt(e*x + d)/(e^7*x^3 + 3*d*e^6*x^2 + 3*d^2*e^5*x + d^3*e^4)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (\left (a + b x\right )^{2}\right )^{\frac{3}{2}}}{\left (d + e x\right )^{\frac{7}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**2+2*a*b*x+a**2)**(3/2)/(e*x+d)**(7/2),x)

[Out]

Integral(((a + b*x)**2)**(3/2)/(d + e*x)**(7/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.21597, size = 265, normalized size = 1.31 \begin{align*} 2 \, \sqrt{x e + d} b^{3} e^{\left (-4\right )} \mathrm{sgn}\left (b x + a\right ) + \frac{2 \,{\left (15 \,{\left (x e + d\right )}^{2} b^{3} d \mathrm{sgn}\left (b x + a\right ) - 5 \,{\left (x e + d\right )} b^{3} d^{2} \mathrm{sgn}\left (b x + a\right ) + b^{3} d^{3} \mathrm{sgn}\left (b x + a\right ) - 15 \,{\left (x e + d\right )}^{2} a b^{2} e \mathrm{sgn}\left (b x + a\right ) + 10 \,{\left (x e + d\right )} a b^{2} d e \mathrm{sgn}\left (b x + a\right ) - 3 \, a b^{2} d^{2} e \mathrm{sgn}\left (b x + a\right ) - 5 \,{\left (x e + d\right )} a^{2} b e^{2} \mathrm{sgn}\left (b x + a\right ) + 3 \, a^{2} b d e^{2} \mathrm{sgn}\left (b x + a\right ) - a^{3} e^{3} \mathrm{sgn}\left (b x + a\right )\right )} e^{\left (-4\right )}}{5 \,{\left (x e + d\right )}^{\frac{5}{2}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(7/2),x, algorithm="giac")

[Out]

2*sqrt(x*e + d)*b^3*e^(-4)*sgn(b*x + a) + 2/5*(15*(x*e + d)^2*b^3*d*sgn(b*x + a) - 5*(x*e + d)*b^3*d^2*sgn(b*x
+ a) + b^3*d^3*sgn(b*x + a) - 15*(x*e + d)^2*a*b^2*e*sgn(b*x + a) + 10*(x*e + d)*a*b^2*d*e*sgn(b*x + a) - 3*a
*b^2*d^2*e*sgn(b*x + a) - 5*(x*e + d)*a^2*b*e^2*sgn(b*x + a) + 3*a^2*b*d*e^2*sgn(b*x + a) - a^3*e^3*sgn(b*x +
a))*e^(-4)/(x*e + d)^(5/2)