### 3.1610 $$\int \frac{1}{(a^2+2 a b x+b^2 x^2)^{5/2}} \, dx$$

Optimal. Leaf size=34 $-\frac{1}{4 b (a+b x) \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}$

[Out]

-1/(4*b*(a + b*x)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0045317, antiderivative size = 34, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 20, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.05, Rules used = {607} $-\frac{1}{4 b (a+b x) \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a^2 + 2*a*b*x + b^2*x^2)^(-5/2),x]

[Out]

-1/(4*b*(a + b*x)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2))

Rule 607

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(a + b*x + c*x^2)^(p + 1))/((2*p + 1)*(b + 2
*c*x)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rubi steps

\begin{align*} \int \frac{1}{\left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx &=-\frac{1}{4 b (a+b x) \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0106671, size = 23, normalized size = 0.68 $-\frac{a+b x}{4 b \left ((a+b x)^2\right )^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a^2 + 2*a*b*x + b^2*x^2)^(-5/2),x]

[Out]

-(a + b*x)/(4*b*((a + b*x)^2)^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.041, size = 20, normalized size = 0.6 \begin{align*} -{\frac{bx+a}{4\,b} \left ( \left ( bx+a \right ) ^{2} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b^2*x^2+2*a*b*x+a^2)^(5/2),x)

[Out]

-1/4*(b*x+a)/b/((b*x+a)^2)^(5/2)

________________________________________________________________________________________

Maxima [A]  time = 1.03628, size = 22, normalized size = 0.65 \begin{align*} -\frac{1}{4 \,{\left (b^{2}\right )}^{\frac{5}{2}}{\left (x + \frac{a}{b}\right )}^{4}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="maxima")

[Out]

-1/4/((b^2)^(5/2)*(x + a/b)^4)

________________________________________________________________________________________

Fricas [A]  time = 1.55644, size = 92, normalized size = 2.71 \begin{align*} -\frac{1}{4 \,{\left (b^{5} x^{4} + 4 \, a b^{4} x^{3} + 6 \, a^{2} b^{3} x^{2} + 4 \, a^{3} b^{2} x + a^{4} b\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="fricas")

[Out]

-1/4/(b^5*x^4 + 4*a*b^4*x^3 + 6*a^2*b^3*x^2 + 4*a^3*b^2*x + a^4*b)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a^{2} + 2 a b x + b^{2} x^{2}\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b**2*x**2+2*a*b*x+a**2)**(5/2),x)

[Out]

Integral((a**2 + 2*a*b*x + b**2*x**2)**(-5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x