### 3.1609 $$\int \frac{d+e x}{(a^2+2 a b x+b^2 x^2)^{5/2}} \, dx$$

Optimal. Leaf size=71 $-\frac{b d-a e}{4 b^2 (a+b x) \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}-\frac{e}{3 b^2 \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}$

[Out]

-e/(3*b^2*(a^2 + 2*a*b*x + b^2*x^2)^(3/2)) - (b*d - a*e)/(4*b^2*(a + b*x)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0214001, antiderivative size = 71, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 26, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.077, Rules used = {640, 607} $-\frac{b d-a e}{4 b^2 (a+b x) \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}-\frac{e}{3 b^2 \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

-e/(3*b^2*(a^2 + 2*a*b*x + b^2*x^2)^(3/2)) - (b*d - a*e)/(4*b^2*(a + b*x)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2))

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 607

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(a + b*x + c*x^2)^(p + 1))/((2*p + 1)*(b + 2
*c*x)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rubi steps

\begin{align*} \int \frac{d+e x}{\left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx &=-\frac{e}{3 b^2 \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}+\frac{\left (2 b^2 d-2 a b e\right ) \int \frac{1}{\left (a^2+2 a b x+b^2 x^2\right )^{5/2}} \, dx}{2 b^2}\\ &=-\frac{e}{3 b^2 \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}-\frac{b d-a e}{4 b^2 (a+b x) \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0159398, size = 39, normalized size = 0.55 $\frac{-a e-3 b d-4 b e x}{12 b^2 (a+b x)^3 \sqrt{(a+b x)^2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)/(a^2 + 2*a*b*x + b^2*x^2)^(5/2),x]

[Out]

(-3*b*d - a*e - 4*b*e*x)/(12*b^2*(a + b*x)^3*Sqrt[(a + b*x)^2])

________________________________________________________________________________________

Maple [A]  time = 0.15, size = 33, normalized size = 0.5 \begin{align*} -{\frac{ \left ( bx+a \right ) \left ( 4\,bxe+ae+3\,bd \right ) }{12\,{b}^{2}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x)

[Out]

-1/12*(b*x+a)/b^2*(4*b*e*x+a*e+3*b*d)/((b*x+a)^2)^(5/2)

________________________________________________________________________________________

Maxima [A]  time = 1.00733, size = 85, normalized size = 1.2 \begin{align*} -\frac{e}{3 \,{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac{3}{2}} b^{2}} - \frac{d}{4 \,{\left (b^{2}\right )}^{\frac{5}{2}}{\left (x + \frac{a}{b}\right )}^{4}} + \frac{a e}{4 \,{\left (b^{2}\right )}^{\frac{5}{2}} b{\left (x + \frac{a}{b}\right )}^{4}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="maxima")

[Out]

-1/3*e/((b^2*x^2 + 2*a*b*x + a^2)^(3/2)*b^2) - 1/4*d/((b^2)^(5/2)*(x + a/b)^4) + 1/4*a*e/((b^2)^(5/2)*b*(x + a
/b)^4)

________________________________________________________________________________________

Fricas [A]  time = 1.59836, size = 128, normalized size = 1.8 \begin{align*} -\frac{4 \, b e x + 3 \, b d + a e}{12 \,{\left (b^{6} x^{4} + 4 \, a b^{5} x^{3} + 6 \, a^{2} b^{4} x^{2} + 4 \, a^{3} b^{3} x + a^{4} b^{2}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="fricas")

[Out]

-1/12*(4*b*e*x + 3*b*d + a*e)/(b^6*x^4 + 4*a*b^5*x^3 + 6*a^2*b^4*x^2 + 4*a^3*b^3*x + a^4*b^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d + e x}{\left (\left (a + b x\right )^{2}\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(b**2*x**2+2*a*b*x+a**2)**(5/2),x)

[Out]

Integral((d + e*x)/((a + b*x)**2)**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)/(b^2*x^2+2*a*b*x+a^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x