3.15 $$\int \frac{(b x+c x^2)^{3/2}}{x} \, dx$$

Optimal. Leaf size=78 $-\frac{b^3 \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{8 c^{3/2}}+\frac{b (b+2 c x) \sqrt{b x+c x^2}}{8 c}+\frac{1}{3} \left (b x+c x^2\right )^{3/2}$

[Out]

(b*(b + 2*c*x)*Sqrt[b*x + c*x^2])/(8*c) + (b*x + c*x^2)^(3/2)/3 - (b^3*ArcTanh[(Sqrt[c]*x)/Sqrt[b*x + c*x^2]])
/(8*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0265645, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 17, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.235, Rules used = {664, 612, 620, 206} $-\frac{b^3 \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{8 c^{3/2}}+\frac{b (b+2 c x) \sqrt{b x+c x^2}}{8 c}+\frac{1}{3} \left (b x+c x^2\right )^{3/2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(b*x + c*x^2)^(3/2)/x,x]

[Out]

(b*(b + 2*c*x)*Sqrt[b*x + c*x^2])/(8*c) + (b*x + c*x^2)^(3/2)/3 - (b^3*ArcTanh[(Sqrt[c]*x)/Sqrt[b*x + c*x^2]])
/(8*c^(3/2))

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[(p*(2*c*d - b*e))/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
&& NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (b x+c x^2\right )^{3/2}}{x} \, dx &=\frac{1}{3} \left (b x+c x^2\right )^{3/2}+\frac{1}{2} b \int \sqrt{b x+c x^2} \, dx\\ &=\frac{b (b+2 c x) \sqrt{b x+c x^2}}{8 c}+\frac{1}{3} \left (b x+c x^2\right )^{3/2}-\frac{b^3 \int \frac{1}{\sqrt{b x+c x^2}} \, dx}{16 c}\\ &=\frac{b (b+2 c x) \sqrt{b x+c x^2}}{8 c}+\frac{1}{3} \left (b x+c x^2\right )^{3/2}-\frac{b^3 \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{b x+c x^2}}\right )}{8 c}\\ &=\frac{b (b+2 c x) \sqrt{b x+c x^2}}{8 c}+\frac{1}{3} \left (b x+c x^2\right )^{3/2}-\frac{b^3 \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{8 c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.117933, size = 87, normalized size = 1.12 $\frac{\sqrt{x (b+c x)} \left (\sqrt{c} \left (3 b^2+14 b c x+8 c^2 x^2\right )-\frac{3 b^{5/2} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{b}}\right )}{\sqrt{x} \sqrt{\frac{c x}{b}+1}}\right )}{24 c^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(b*x + c*x^2)^(3/2)/x,x]

[Out]

(Sqrt[x*(b + c*x)]*(Sqrt[c]*(3*b^2 + 14*b*c*x + 8*c^2*x^2) - (3*b^(5/2)*ArcSinh[(Sqrt[c]*Sqrt[x])/Sqrt[b]])/(S
qrt[x]*Sqrt[1 + (c*x)/b])))/(24*c^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.047, size = 81, normalized size = 1. \begin{align*}{\frac{1}{3} \left ( c{x}^{2}+bx \right ) ^{{\frac{3}{2}}}}+{\frac{bx}{4}\sqrt{c{x}^{2}+bx}}+{\frac{{b}^{2}}{8\,c}\sqrt{c{x}^{2}+bx}}-{\frac{{b}^{3}}{16}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx} \right ){c}^{-{\frac{3}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^(3/2)/x,x)

[Out]

1/3*(c*x^2+b*x)^(3/2)+1/4*b*(c*x^2+b*x)^(1/2)*x+1/8/c*(c*x^2+b*x)^(1/2)*b^2-1/16*b^3/c^(3/2)*ln((1/2*b+c*x)/c^
(1/2)+(c*x^2+b*x)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(3/2)/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.01422, size = 344, normalized size = 4.41 \begin{align*} \left [\frac{3 \, b^{3} \sqrt{c} \log \left (2 \, c x + b - 2 \, \sqrt{c x^{2} + b x} \sqrt{c}\right ) + 2 \,{\left (8 \, c^{3} x^{2} + 14 \, b c^{2} x + 3 \, b^{2} c\right )} \sqrt{c x^{2} + b x}}{48 \, c^{2}}, \frac{3 \, b^{3} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{2} + b x} \sqrt{-c}}{c x}\right ) +{\left (8 \, c^{3} x^{2} + 14 \, b c^{2} x + 3 \, b^{2} c\right )} \sqrt{c x^{2} + b x}}{24 \, c^{2}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(3/2)/x,x, algorithm="fricas")

[Out]

[1/48*(3*b^3*sqrt(c)*log(2*c*x + b - 2*sqrt(c*x^2 + b*x)*sqrt(c)) + 2*(8*c^3*x^2 + 14*b*c^2*x + 3*b^2*c)*sqrt(
c*x^2 + b*x))/c^2, 1/24*(3*b^3*sqrt(-c)*arctan(sqrt(c*x^2 + b*x)*sqrt(-c)/(c*x)) + (8*c^3*x^2 + 14*b*c^2*x + 3
*b^2*c)*sqrt(c*x^2 + b*x))/c^2]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (x \left (b + c x\right )\right )^{\frac{3}{2}}}{x}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**(3/2)/x,x)

[Out]

Integral((x*(b + c*x))**(3/2)/x, x)

________________________________________________________________________________________

Giac [A]  time = 1.45398, size = 97, normalized size = 1.24 \begin{align*} \frac{b^{3} \log \left ({\left | -2 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x}\right )} \sqrt{c} - b \right |}\right )}{16 \, c^{\frac{3}{2}}} + \frac{1}{24} \, \sqrt{c x^{2} + b x}{\left (2 \,{\left (4 \, c x + 7 \, b\right )} x + \frac{3 \, b^{2}}{c}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(3/2)/x,x, algorithm="giac")

[Out]

1/16*b^3*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x))*sqrt(c) - b))/c^(3/2) + 1/24*sqrt(c*x^2 + b*x)*(2*(4*c*x +
7*b)*x + 3*b^2/c)