3.1482 $$\int (d+e x)^7 (a^2+2 a b x+b^2 x^2)^3 \, dx$$

Optimal. Leaf size=173 $-\frac{6 b^5 (d+e x)^{13} (b d-a e)}{13 e^7}+\frac{5 b^4 (d+e x)^{12} (b d-a e)^2}{4 e^7}-\frac{20 b^3 (d+e x)^{11} (b d-a e)^3}{11 e^7}+\frac{3 b^2 (d+e x)^{10} (b d-a e)^4}{2 e^7}-\frac{2 b (d+e x)^9 (b d-a e)^5}{3 e^7}+\frac{(d+e x)^8 (b d-a e)^6}{8 e^7}+\frac{b^6 (d+e x)^{14}}{14 e^7}$

[Out]

((b*d - a*e)^6*(d + e*x)^8)/(8*e^7) - (2*b*(b*d - a*e)^5*(d + e*x)^9)/(3*e^7) + (3*b^2*(b*d - a*e)^4*(d + e*x)
^10)/(2*e^7) - (20*b^3*(b*d - a*e)^3*(d + e*x)^11)/(11*e^7) + (5*b^4*(b*d - a*e)^2*(d + e*x)^12)/(4*e^7) - (6*
b^5*(b*d - a*e)*(d + e*x)^13)/(13*e^7) + (b^6*(d + e*x)^14)/(14*e^7)

________________________________________________________________________________________

Rubi [A]  time = 0.432571, antiderivative size = 173, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 26, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.077, Rules used = {27, 43} $-\frac{6 b^5 (d+e x)^{13} (b d-a e)}{13 e^7}+\frac{5 b^4 (d+e x)^{12} (b d-a e)^2}{4 e^7}-\frac{20 b^3 (d+e x)^{11} (b d-a e)^3}{11 e^7}+\frac{3 b^2 (d+e x)^{10} (b d-a e)^4}{2 e^7}-\frac{2 b (d+e x)^9 (b d-a e)^5}{3 e^7}+\frac{(d+e x)^8 (b d-a e)^6}{8 e^7}+\frac{b^6 (d+e x)^{14}}{14 e^7}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^7*(a^2 + 2*a*b*x + b^2*x^2)^3,x]

[Out]

((b*d - a*e)^6*(d + e*x)^8)/(8*e^7) - (2*b*(b*d - a*e)^5*(d + e*x)^9)/(3*e^7) + (3*b^2*(b*d - a*e)^4*(d + e*x)
^10)/(2*e^7) - (20*b^3*(b*d - a*e)^3*(d + e*x)^11)/(11*e^7) + (5*b^4*(b*d - a*e)^2*(d + e*x)^12)/(4*e^7) - (6*
b^5*(b*d - a*e)*(d + e*x)^13)/(13*e^7) + (b^6*(d + e*x)^14)/(14*e^7)

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int (d+e x)^7 \left (a^2+2 a b x+b^2 x^2\right )^3 \, dx &=\int (a+b x)^6 (d+e x)^7 \, dx\\ &=\int \left (\frac{(-b d+a e)^6 (d+e x)^7}{e^6}-\frac{6 b (b d-a e)^5 (d+e x)^8}{e^6}+\frac{15 b^2 (b d-a e)^4 (d+e x)^9}{e^6}-\frac{20 b^3 (b d-a e)^3 (d+e x)^{10}}{e^6}+\frac{15 b^4 (b d-a e)^2 (d+e x)^{11}}{e^6}-\frac{6 b^5 (b d-a e) (d+e x)^{12}}{e^6}+\frac{b^6 (d+e x)^{13}}{e^6}\right ) \, dx\\ &=\frac{(b d-a e)^6 (d+e x)^8}{8 e^7}-\frac{2 b (b d-a e)^5 (d+e x)^9}{3 e^7}+\frac{3 b^2 (b d-a e)^4 (d+e x)^{10}}{2 e^7}-\frac{20 b^3 (b d-a e)^3 (d+e x)^{11}}{11 e^7}+\frac{5 b^4 (b d-a e)^2 (d+e x)^{12}}{4 e^7}-\frac{6 b^5 (b d-a e) (d+e x)^{13}}{13 e^7}+\frac{b^6 (d+e x)^{14}}{14 e^7}\\ \end{align*}

Mathematica [B]  time = 0.0957017, size = 684, normalized size = 3.95 $\frac{1}{4} b^4 e^5 x^{12} \left (5 a^2 e^2+14 a b d e+7 b^2 d^2\right )+\frac{1}{11} b^3 e^4 x^{11} \left (105 a^2 b d e^2+20 a^3 e^3+126 a b^2 d^2 e+35 b^3 d^3\right )+\frac{1}{2} b^2 e^3 x^{10} \left (63 a^2 b^2 d^2 e^2+28 a^3 b d e^3+3 a^4 e^4+42 a b^3 d^3 e+7 b^4 d^4\right )+\frac{1}{3} b e^2 x^9 \left (175 a^2 b^3 d^3 e^2+140 a^3 b^2 d^2 e^3+35 a^4 b d e^4+2 a^5 e^5+70 a b^4 d^4 e+7 b^5 d^5\right )+\frac{1}{8} e x^8 \left (525 a^2 b^4 d^4 e^2+700 a^3 b^3 d^3 e^3+315 a^4 b^2 d^2 e^4+42 a^5 b d e^5+a^6 e^6+126 a b^5 d^5 e+7 b^6 d^6\right )+\frac{1}{7} d x^7 \left (315 a^2 b^4 d^4 e^2+700 a^3 b^3 d^3 e^3+525 a^4 b^2 d^2 e^4+126 a^5 b d e^5+7 a^6 e^6+42 a b^5 d^5 e+b^6 d^6\right )+\frac{1}{2} a d^2 x^6 \left (140 a^2 b^3 d^3 e^2+175 a^3 b^2 d^2 e^3+70 a^4 b d e^4+7 a^5 e^5+35 a b^4 d^4 e+2 b^5 d^5\right )+a^2 d^3 x^5 \left (63 a^2 b^2 d^2 e^2+42 a^3 b d e^3+7 a^4 e^4+28 a b^3 d^3 e+3 b^4 d^4\right )+\frac{1}{4} a^3 d^4 x^4 \left (126 a^2 b d e^2+35 a^3 e^3+105 a b^2 d^2 e+20 b^3 d^3\right )+a^4 d^5 x^3 \left (7 a^2 e^2+14 a b d e+5 b^2 d^2\right )+\frac{1}{2} a^5 d^6 x^2 (7 a e+6 b d)+a^6 d^7 x+\frac{1}{13} b^5 e^6 x^{13} (6 a e+7 b d)+\frac{1}{14} b^6 e^7 x^{14}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^7*(a^2 + 2*a*b*x + b^2*x^2)^3,x]

[Out]

a^6*d^7*x + (a^5*d^6*(6*b*d + 7*a*e)*x^2)/2 + a^4*d^5*(5*b^2*d^2 + 14*a*b*d*e + 7*a^2*e^2)*x^3 + (a^3*d^4*(20*
b^3*d^3 + 105*a*b^2*d^2*e + 126*a^2*b*d*e^2 + 35*a^3*e^3)*x^4)/4 + a^2*d^3*(3*b^4*d^4 + 28*a*b^3*d^3*e + 63*a^
2*b^2*d^2*e^2 + 42*a^3*b*d*e^3 + 7*a^4*e^4)*x^5 + (a*d^2*(2*b^5*d^5 + 35*a*b^4*d^4*e + 140*a^2*b^3*d^3*e^2 + 1
75*a^3*b^2*d^2*e^3 + 70*a^4*b*d*e^4 + 7*a^5*e^5)*x^6)/2 + (d*(b^6*d^6 + 42*a*b^5*d^5*e + 315*a^2*b^4*d^4*e^2 +
700*a^3*b^3*d^3*e^3 + 525*a^4*b^2*d^2*e^4 + 126*a^5*b*d*e^5 + 7*a^6*e^6)*x^7)/7 + (e*(7*b^6*d^6 + 126*a*b^5*d
^5*e + 525*a^2*b^4*d^4*e^2 + 700*a^3*b^3*d^3*e^3 + 315*a^4*b^2*d^2*e^4 + 42*a^5*b*d*e^5 + a^6*e^6)*x^8)/8 + (b
*e^2*(7*b^5*d^5 + 70*a*b^4*d^4*e + 175*a^2*b^3*d^3*e^2 + 140*a^3*b^2*d^2*e^3 + 35*a^4*b*d*e^4 + 2*a^5*e^5)*x^9
)/3 + (b^2*e^3*(7*b^4*d^4 + 42*a*b^3*d^3*e + 63*a^2*b^2*d^2*e^2 + 28*a^3*b*d*e^3 + 3*a^4*e^4)*x^10)/2 + (b^3*e
^4*(35*b^3*d^3 + 126*a*b^2*d^2*e + 105*a^2*b*d*e^2 + 20*a^3*e^3)*x^11)/11 + (b^4*e^5*(7*b^2*d^2 + 14*a*b*d*e +
5*a^2*e^2)*x^12)/4 + (b^5*e^6*(7*b*d + 6*a*e)*x^13)/13 + (b^6*e^7*x^14)/14

________________________________________________________________________________________

Maple [B]  time = 0.04, size = 709, normalized size = 4.1 \begin{align*}{\frac{{e}^{7}{b}^{6}{x}^{14}}{14}}+{\frac{ \left ( 6\,{e}^{7}a{b}^{5}+7\,d{e}^{6}{b}^{6} \right ){x}^{13}}{13}}+{\frac{ \left ( 15\,{e}^{7}{a}^{2}{b}^{4}+42\,d{e}^{6}a{b}^{5}+21\,{d}^{2}{e}^{5}{b}^{6} \right ){x}^{12}}{12}}+{\frac{ \left ( 20\,{e}^{7}{a}^{3}{b}^{3}+105\,d{e}^{6}{a}^{2}{b}^{4}+126\,{d}^{2}{e}^{5}a{b}^{5}+35\,{d}^{3}{e}^{4}{b}^{6} \right ){x}^{11}}{11}}+{\frac{ \left ( 15\,{e}^{7}{a}^{4}{b}^{2}+140\,d{e}^{6}{a}^{3}{b}^{3}+315\,{d}^{2}{e}^{5}{a}^{2}{b}^{4}+210\,{d}^{3}{e}^{4}a{b}^{5}+35\,{d}^{4}{e}^{3}{b}^{6} \right ){x}^{10}}{10}}+{\frac{ \left ( 6\,{e}^{7}{a}^{5}b+105\,d{e}^{6}{a}^{4}{b}^{2}+420\,{d}^{2}{e}^{5}{a}^{3}{b}^{3}+525\,{d}^{3}{e}^{4}{a}^{2}{b}^{4}+210\,{d}^{4}{e}^{3}a{b}^{5}+21\,{d}^{5}{e}^{2}{b}^{6} \right ){x}^{9}}{9}}+{\frac{ \left ({e}^{7}{a}^{6}+42\,d{e}^{6}{a}^{5}b+315\,{d}^{2}{e}^{5}{a}^{4}{b}^{2}+700\,{d}^{3}{e}^{4}{a}^{3}{b}^{3}+525\,{d}^{4}{e}^{3}{a}^{2}{b}^{4}+126\,{d}^{5}{e}^{2}a{b}^{5}+7\,{d}^{6}e{b}^{6} \right ){x}^{8}}{8}}+{\frac{ \left ( 7\,d{e}^{6}{a}^{6}+126\,{d}^{2}{e}^{5}{a}^{5}b+525\,{d}^{3}{e}^{4}{a}^{4}{b}^{2}+700\,{d}^{4}{e}^{3}{a}^{3}{b}^{3}+315\,{d}^{5}{e}^{2}{a}^{2}{b}^{4}+42\,{d}^{6}ea{b}^{5}+{d}^{7}{b}^{6} \right ){x}^{7}}{7}}+{\frac{ \left ( 21\,{d}^{2}{e}^{5}{a}^{6}+210\,{d}^{3}{e}^{4}{a}^{5}b+525\,{d}^{4}{e}^{3}{a}^{4}{b}^{2}+420\,{d}^{5}{e}^{2}{a}^{3}{b}^{3}+105\,{d}^{6}e{a}^{2}{b}^{4}+6\,{d}^{7}a{b}^{5} \right ){x}^{6}}{6}}+{\frac{ \left ( 35\,{d}^{3}{e}^{4}{a}^{6}+210\,{d}^{4}{e}^{3}{a}^{5}b+315\,{d}^{5}{e}^{2}{a}^{4}{b}^{2}+140\,{d}^{6}e{a}^{3}{b}^{3}+15\,{d}^{7}{a}^{2}{b}^{4} \right ){x}^{5}}{5}}+{\frac{ \left ( 35\,{d}^{4}{e}^{3}{a}^{6}+126\,{d}^{5}{e}^{2}{a}^{5}b+105\,{d}^{6}e{a}^{4}{b}^{2}+20\,{d}^{7}{a}^{3}{b}^{3} \right ){x}^{4}}{4}}+{\frac{ \left ( 21\,{d}^{5}{e}^{2}{a}^{6}+42\,{d}^{6}e{a}^{5}b+15\,{d}^{7}{a}^{4}{b}^{2} \right ){x}^{3}}{3}}+{\frac{ \left ( 7\,{d}^{6}e{a}^{6}+6\,{d}^{7}{a}^{5}b \right ){x}^{2}}{2}}+{d}^{7}{a}^{6}x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^7*(b^2*x^2+2*a*b*x+a^2)^3,x)

[Out]

1/14*e^7*b^6*x^14+1/13*(6*a*b^5*e^7+7*b^6*d*e^6)*x^13+1/12*(15*a^2*b^4*e^7+42*a*b^5*d*e^6+21*b^6*d^2*e^5)*x^12
+1/11*(20*a^3*b^3*e^7+105*a^2*b^4*d*e^6+126*a*b^5*d^2*e^5+35*b^6*d^3*e^4)*x^11+1/10*(15*a^4*b^2*e^7+140*a^3*b^
3*d*e^6+315*a^2*b^4*d^2*e^5+210*a*b^5*d^3*e^4+35*b^6*d^4*e^3)*x^10+1/9*(6*a^5*b*e^7+105*a^4*b^2*d*e^6+420*a^3*
b^3*d^2*e^5+525*a^2*b^4*d^3*e^4+210*a*b^5*d^4*e^3+21*b^6*d^5*e^2)*x^9+1/8*(a^6*e^7+42*a^5*b*d*e^6+315*a^4*b^2*
d^2*e^5+700*a^3*b^3*d^3*e^4+525*a^2*b^4*d^4*e^3+126*a*b^5*d^5*e^2+7*b^6*d^6*e)*x^8+1/7*(7*a^6*d*e^6+126*a^5*b*
d^2*e^5+525*a^4*b^2*d^3*e^4+700*a^3*b^3*d^4*e^3+315*a^2*b^4*d^5*e^2+42*a*b^5*d^6*e+b^6*d^7)*x^7+1/6*(21*a^6*d^
2*e^5+210*a^5*b*d^3*e^4+525*a^4*b^2*d^4*e^3+420*a^3*b^3*d^5*e^2+105*a^2*b^4*d^6*e+6*a*b^5*d^7)*x^6+1/5*(35*a^6
*d^3*e^4+210*a^5*b*d^4*e^3+315*a^4*b^2*d^5*e^2+140*a^3*b^3*d^6*e+15*a^2*b^4*d^7)*x^5+1/4*(35*a^6*d^4*e^3+126*a
^5*b*d^5*e^2+105*a^4*b^2*d^6*e+20*a^3*b^3*d^7)*x^4+1/3*(21*a^6*d^5*e^2+42*a^5*b*d^6*e+15*a^4*b^2*d^7)*x^3+1/2*
(7*a^6*d^6*e+6*a^5*b*d^7)*x^2+d^7*a^6*x

________________________________________________________________________________________

Maxima [B]  time = 1.14744, size = 953, normalized size = 5.51 \begin{align*} \frac{1}{14} \, b^{6} e^{7} x^{14} + a^{6} d^{7} x + \frac{1}{13} \,{\left (7 \, b^{6} d e^{6} + 6 \, a b^{5} e^{7}\right )} x^{13} + \frac{1}{4} \,{\left (7 \, b^{6} d^{2} e^{5} + 14 \, a b^{5} d e^{6} + 5 \, a^{2} b^{4} e^{7}\right )} x^{12} + \frac{1}{11} \,{\left (35 \, b^{6} d^{3} e^{4} + 126 \, a b^{5} d^{2} e^{5} + 105 \, a^{2} b^{4} d e^{6} + 20 \, a^{3} b^{3} e^{7}\right )} x^{11} + \frac{1}{2} \,{\left (7 \, b^{6} d^{4} e^{3} + 42 \, a b^{5} d^{3} e^{4} + 63 \, a^{2} b^{4} d^{2} e^{5} + 28 \, a^{3} b^{3} d e^{6} + 3 \, a^{4} b^{2} e^{7}\right )} x^{10} + \frac{1}{3} \,{\left (7 \, b^{6} d^{5} e^{2} + 70 \, a b^{5} d^{4} e^{3} + 175 \, a^{2} b^{4} d^{3} e^{4} + 140 \, a^{3} b^{3} d^{2} e^{5} + 35 \, a^{4} b^{2} d e^{6} + 2 \, a^{5} b e^{7}\right )} x^{9} + \frac{1}{8} \,{\left (7 \, b^{6} d^{6} e + 126 \, a b^{5} d^{5} e^{2} + 525 \, a^{2} b^{4} d^{4} e^{3} + 700 \, a^{3} b^{3} d^{3} e^{4} + 315 \, a^{4} b^{2} d^{2} e^{5} + 42 \, a^{5} b d e^{6} + a^{6} e^{7}\right )} x^{8} + \frac{1}{7} \,{\left (b^{6} d^{7} + 42 \, a b^{5} d^{6} e + 315 \, a^{2} b^{4} d^{5} e^{2} + 700 \, a^{3} b^{3} d^{4} e^{3} + 525 \, a^{4} b^{2} d^{3} e^{4} + 126 \, a^{5} b d^{2} e^{5} + 7 \, a^{6} d e^{6}\right )} x^{7} + \frac{1}{2} \,{\left (2 \, a b^{5} d^{7} + 35 \, a^{2} b^{4} d^{6} e + 140 \, a^{3} b^{3} d^{5} e^{2} + 175 \, a^{4} b^{2} d^{4} e^{3} + 70 \, a^{5} b d^{3} e^{4} + 7 \, a^{6} d^{2} e^{5}\right )} x^{6} +{\left (3 \, a^{2} b^{4} d^{7} + 28 \, a^{3} b^{3} d^{6} e + 63 \, a^{4} b^{2} d^{5} e^{2} + 42 \, a^{5} b d^{4} e^{3} + 7 \, a^{6} d^{3} e^{4}\right )} x^{5} + \frac{1}{4} \,{\left (20 \, a^{3} b^{3} d^{7} + 105 \, a^{4} b^{2} d^{6} e + 126 \, a^{5} b d^{5} e^{2} + 35 \, a^{6} d^{4} e^{3}\right )} x^{4} +{\left (5 \, a^{4} b^{2} d^{7} + 14 \, a^{5} b d^{6} e + 7 \, a^{6} d^{5} e^{2}\right )} x^{3} + \frac{1}{2} \,{\left (6 \, a^{5} b d^{7} + 7 \, a^{6} d^{6} e\right )} x^{2} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^7*(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="maxima")

[Out]

1/14*b^6*e^7*x^14 + a^6*d^7*x + 1/13*(7*b^6*d*e^6 + 6*a*b^5*e^7)*x^13 + 1/4*(7*b^6*d^2*e^5 + 14*a*b^5*d*e^6 +
5*a^2*b^4*e^7)*x^12 + 1/11*(35*b^6*d^3*e^4 + 126*a*b^5*d^2*e^5 + 105*a^2*b^4*d*e^6 + 20*a^3*b^3*e^7)*x^11 + 1/
2*(7*b^6*d^4*e^3 + 42*a*b^5*d^3*e^4 + 63*a^2*b^4*d^2*e^5 + 28*a^3*b^3*d*e^6 + 3*a^4*b^2*e^7)*x^10 + 1/3*(7*b^6
*d^5*e^2 + 70*a*b^5*d^4*e^3 + 175*a^2*b^4*d^3*e^4 + 140*a^3*b^3*d^2*e^5 + 35*a^4*b^2*d*e^6 + 2*a^5*b*e^7)*x^9
+ 1/8*(7*b^6*d^6*e + 126*a*b^5*d^5*e^2 + 525*a^2*b^4*d^4*e^3 + 700*a^3*b^3*d^3*e^4 + 315*a^4*b^2*d^2*e^5 + 42*
a^5*b*d*e^6 + a^6*e^7)*x^8 + 1/7*(b^6*d^7 + 42*a*b^5*d^6*e + 315*a^2*b^4*d^5*e^2 + 700*a^3*b^3*d^4*e^3 + 525*a
^4*b^2*d^3*e^4 + 126*a^5*b*d^2*e^5 + 7*a^6*d*e^6)*x^7 + 1/2*(2*a*b^5*d^7 + 35*a^2*b^4*d^6*e + 140*a^3*b^3*d^5*
e^2 + 175*a^4*b^2*d^4*e^3 + 70*a^5*b*d^3*e^4 + 7*a^6*d^2*e^5)*x^6 + (3*a^2*b^4*d^7 + 28*a^3*b^3*d^6*e + 63*a^4
*b^2*d^5*e^2 + 42*a^5*b*d^4*e^3 + 7*a^6*d^3*e^4)*x^5 + 1/4*(20*a^3*b^3*d^7 + 105*a^4*b^2*d^6*e + 126*a^5*b*d^5
*e^2 + 35*a^6*d^4*e^3)*x^4 + (5*a^4*b^2*d^7 + 14*a^5*b*d^6*e + 7*a^6*d^5*e^2)*x^3 + 1/2*(6*a^5*b*d^7 + 7*a^6*d
^6*e)*x^2

________________________________________________________________________________________

Fricas [B]  time = 1.5536, size = 1736, normalized size = 10.03 \begin{align*} \frac{1}{14} x^{14} e^{7} b^{6} + \frac{7}{13} x^{13} e^{6} d b^{6} + \frac{6}{13} x^{13} e^{7} b^{5} a + \frac{7}{4} x^{12} e^{5} d^{2} b^{6} + \frac{7}{2} x^{12} e^{6} d b^{5} a + \frac{5}{4} x^{12} e^{7} b^{4} a^{2} + \frac{35}{11} x^{11} e^{4} d^{3} b^{6} + \frac{126}{11} x^{11} e^{5} d^{2} b^{5} a + \frac{105}{11} x^{11} e^{6} d b^{4} a^{2} + \frac{20}{11} x^{11} e^{7} b^{3} a^{3} + \frac{7}{2} x^{10} e^{3} d^{4} b^{6} + 21 x^{10} e^{4} d^{3} b^{5} a + \frac{63}{2} x^{10} e^{5} d^{2} b^{4} a^{2} + 14 x^{10} e^{6} d b^{3} a^{3} + \frac{3}{2} x^{10} e^{7} b^{2} a^{4} + \frac{7}{3} x^{9} e^{2} d^{5} b^{6} + \frac{70}{3} x^{9} e^{3} d^{4} b^{5} a + \frac{175}{3} x^{9} e^{4} d^{3} b^{4} a^{2} + \frac{140}{3} x^{9} e^{5} d^{2} b^{3} a^{3} + \frac{35}{3} x^{9} e^{6} d b^{2} a^{4} + \frac{2}{3} x^{9} e^{7} b a^{5} + \frac{7}{8} x^{8} e d^{6} b^{6} + \frac{63}{4} x^{8} e^{2} d^{5} b^{5} a + \frac{525}{8} x^{8} e^{3} d^{4} b^{4} a^{2} + \frac{175}{2} x^{8} e^{4} d^{3} b^{3} a^{3} + \frac{315}{8} x^{8} e^{5} d^{2} b^{2} a^{4} + \frac{21}{4} x^{8} e^{6} d b a^{5} + \frac{1}{8} x^{8} e^{7} a^{6} + \frac{1}{7} x^{7} d^{7} b^{6} + 6 x^{7} e d^{6} b^{5} a + 45 x^{7} e^{2} d^{5} b^{4} a^{2} + 100 x^{7} e^{3} d^{4} b^{3} a^{3} + 75 x^{7} e^{4} d^{3} b^{2} a^{4} + 18 x^{7} e^{5} d^{2} b a^{5} + x^{7} e^{6} d a^{6} + x^{6} d^{7} b^{5} a + \frac{35}{2} x^{6} e d^{6} b^{4} a^{2} + 70 x^{6} e^{2} d^{5} b^{3} a^{3} + \frac{175}{2} x^{6} e^{3} d^{4} b^{2} a^{4} + 35 x^{6} e^{4} d^{3} b a^{5} + \frac{7}{2} x^{6} e^{5} d^{2} a^{6} + 3 x^{5} d^{7} b^{4} a^{2} + 28 x^{5} e d^{6} b^{3} a^{3} + 63 x^{5} e^{2} d^{5} b^{2} a^{4} + 42 x^{5} e^{3} d^{4} b a^{5} + 7 x^{5} e^{4} d^{3} a^{6} + 5 x^{4} d^{7} b^{3} a^{3} + \frac{105}{4} x^{4} e d^{6} b^{2} a^{4} + \frac{63}{2} x^{4} e^{2} d^{5} b a^{5} + \frac{35}{4} x^{4} e^{3} d^{4} a^{6} + 5 x^{3} d^{7} b^{2} a^{4} + 14 x^{3} e d^{6} b a^{5} + 7 x^{3} e^{2} d^{5} a^{6} + 3 x^{2} d^{7} b a^{5} + \frac{7}{2} x^{2} e d^{6} a^{6} + x d^{7} a^{6} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^7*(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="fricas")

[Out]

1/14*x^14*e^7*b^6 + 7/13*x^13*e^6*d*b^6 + 6/13*x^13*e^7*b^5*a + 7/4*x^12*e^5*d^2*b^6 + 7/2*x^12*e^6*d*b^5*a +
5/4*x^12*e^7*b^4*a^2 + 35/11*x^11*e^4*d^3*b^6 + 126/11*x^11*e^5*d^2*b^5*a + 105/11*x^11*e^6*d*b^4*a^2 + 20/11*
x^11*e^7*b^3*a^3 + 7/2*x^10*e^3*d^4*b^6 + 21*x^10*e^4*d^3*b^5*a + 63/2*x^10*e^5*d^2*b^4*a^2 + 14*x^10*e^6*d*b^
3*a^3 + 3/2*x^10*e^7*b^2*a^4 + 7/3*x^9*e^2*d^5*b^6 + 70/3*x^9*e^3*d^4*b^5*a + 175/3*x^9*e^4*d^3*b^4*a^2 + 140/
3*x^9*e^5*d^2*b^3*a^3 + 35/3*x^9*e^6*d*b^2*a^4 + 2/3*x^9*e^7*b*a^5 + 7/8*x^8*e*d^6*b^6 + 63/4*x^8*e^2*d^5*b^5*
a + 525/8*x^8*e^3*d^4*b^4*a^2 + 175/2*x^8*e^4*d^3*b^3*a^3 + 315/8*x^8*e^5*d^2*b^2*a^4 + 21/4*x^8*e^6*d*b*a^5 +
1/8*x^8*e^7*a^6 + 1/7*x^7*d^7*b^6 + 6*x^7*e*d^6*b^5*a + 45*x^7*e^2*d^5*b^4*a^2 + 100*x^7*e^3*d^4*b^3*a^3 + 75
*x^7*e^4*d^3*b^2*a^4 + 18*x^7*e^5*d^2*b*a^5 + x^7*e^6*d*a^6 + x^6*d^7*b^5*a + 35/2*x^6*e*d^6*b^4*a^2 + 70*x^6*
e^2*d^5*b^3*a^3 + 175/2*x^6*e^3*d^4*b^2*a^4 + 35*x^6*e^4*d^3*b*a^5 + 7/2*x^6*e^5*d^2*a^6 + 3*x^5*d^7*b^4*a^2 +
28*x^5*e*d^6*b^3*a^3 + 63*x^5*e^2*d^5*b^2*a^4 + 42*x^5*e^3*d^4*b*a^5 + 7*x^5*e^4*d^3*a^6 + 5*x^4*d^7*b^3*a^3
+ 105/4*x^4*e*d^6*b^2*a^4 + 63/2*x^4*e^2*d^5*b*a^5 + 35/4*x^4*e^3*d^4*a^6 + 5*x^3*d^7*b^2*a^4 + 14*x^3*e*d^6*b
*a^5 + 7*x^3*e^2*d^5*a^6 + 3*x^2*d^7*b*a^5 + 7/2*x^2*e*d^6*a^6 + x*d^7*a^6

________________________________________________________________________________________

Sympy [B]  time = 0.204006, size = 796, normalized size = 4.6 \begin{align*} a^{6} d^{7} x + \frac{b^{6} e^{7} x^{14}}{14} + x^{13} \left (\frac{6 a b^{5} e^{7}}{13} + \frac{7 b^{6} d e^{6}}{13}\right ) + x^{12} \left (\frac{5 a^{2} b^{4} e^{7}}{4} + \frac{7 a b^{5} d e^{6}}{2} + \frac{7 b^{6} d^{2} e^{5}}{4}\right ) + x^{11} \left (\frac{20 a^{3} b^{3} e^{7}}{11} + \frac{105 a^{2} b^{4} d e^{6}}{11} + \frac{126 a b^{5} d^{2} e^{5}}{11} + \frac{35 b^{6} d^{3} e^{4}}{11}\right ) + x^{10} \left (\frac{3 a^{4} b^{2} e^{7}}{2} + 14 a^{3} b^{3} d e^{6} + \frac{63 a^{2} b^{4} d^{2} e^{5}}{2} + 21 a b^{5} d^{3} e^{4} + \frac{7 b^{6} d^{4} e^{3}}{2}\right ) + x^{9} \left (\frac{2 a^{5} b e^{7}}{3} + \frac{35 a^{4} b^{2} d e^{6}}{3} + \frac{140 a^{3} b^{3} d^{2} e^{5}}{3} + \frac{175 a^{2} b^{4} d^{3} e^{4}}{3} + \frac{70 a b^{5} d^{4} e^{3}}{3} + \frac{7 b^{6} d^{5} e^{2}}{3}\right ) + x^{8} \left (\frac{a^{6} e^{7}}{8} + \frac{21 a^{5} b d e^{6}}{4} + \frac{315 a^{4} b^{2} d^{2} e^{5}}{8} + \frac{175 a^{3} b^{3} d^{3} e^{4}}{2} + \frac{525 a^{2} b^{4} d^{4} e^{3}}{8} + \frac{63 a b^{5} d^{5} e^{2}}{4} + \frac{7 b^{6} d^{6} e}{8}\right ) + x^{7} \left (a^{6} d e^{6} + 18 a^{5} b d^{2} e^{5} + 75 a^{4} b^{2} d^{3} e^{4} + 100 a^{3} b^{3} d^{4} e^{3} + 45 a^{2} b^{4} d^{5} e^{2} + 6 a b^{5} d^{6} e + \frac{b^{6} d^{7}}{7}\right ) + x^{6} \left (\frac{7 a^{6} d^{2} e^{5}}{2} + 35 a^{5} b d^{3} e^{4} + \frac{175 a^{4} b^{2} d^{4} e^{3}}{2} + 70 a^{3} b^{3} d^{5} e^{2} + \frac{35 a^{2} b^{4} d^{6} e}{2} + a b^{5} d^{7}\right ) + x^{5} \left (7 a^{6} d^{3} e^{4} + 42 a^{5} b d^{4} e^{3} + 63 a^{4} b^{2} d^{5} e^{2} + 28 a^{3} b^{3} d^{6} e + 3 a^{2} b^{4} d^{7}\right ) + x^{4} \left (\frac{35 a^{6} d^{4} e^{3}}{4} + \frac{63 a^{5} b d^{5} e^{2}}{2} + \frac{105 a^{4} b^{2} d^{6} e}{4} + 5 a^{3} b^{3} d^{7}\right ) + x^{3} \left (7 a^{6} d^{5} e^{2} + 14 a^{5} b d^{6} e + 5 a^{4} b^{2} d^{7}\right ) + x^{2} \left (\frac{7 a^{6} d^{6} e}{2} + 3 a^{5} b d^{7}\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**7*(b**2*x**2+2*a*b*x+a**2)**3,x)

[Out]

a**6*d**7*x + b**6*e**7*x**14/14 + x**13*(6*a*b**5*e**7/13 + 7*b**6*d*e**6/13) + x**12*(5*a**2*b**4*e**7/4 + 7
*a*b**5*d*e**6/2 + 7*b**6*d**2*e**5/4) + x**11*(20*a**3*b**3*e**7/11 + 105*a**2*b**4*d*e**6/11 + 126*a*b**5*d*
*2*e**5/11 + 35*b**6*d**3*e**4/11) + x**10*(3*a**4*b**2*e**7/2 + 14*a**3*b**3*d*e**6 + 63*a**2*b**4*d**2*e**5/
2 + 21*a*b**5*d**3*e**4 + 7*b**6*d**4*e**3/2) + x**9*(2*a**5*b*e**7/3 + 35*a**4*b**2*d*e**6/3 + 140*a**3*b**3*
d**2*e**5/3 + 175*a**2*b**4*d**3*e**4/3 + 70*a*b**5*d**4*e**3/3 + 7*b**6*d**5*e**2/3) + x**8*(a**6*e**7/8 + 21
*a**5*b*d*e**6/4 + 315*a**4*b**2*d**2*e**5/8 + 175*a**3*b**3*d**3*e**4/2 + 525*a**2*b**4*d**4*e**3/8 + 63*a*b*
*5*d**5*e**2/4 + 7*b**6*d**6*e/8) + x**7*(a**6*d*e**6 + 18*a**5*b*d**2*e**5 + 75*a**4*b**2*d**3*e**4 + 100*a**
3*b**3*d**4*e**3 + 45*a**2*b**4*d**5*e**2 + 6*a*b**5*d**6*e + b**6*d**7/7) + x**6*(7*a**6*d**2*e**5/2 + 35*a**
5*b*d**3*e**4 + 175*a**4*b**2*d**4*e**3/2 + 70*a**3*b**3*d**5*e**2 + 35*a**2*b**4*d**6*e/2 + a*b**5*d**7) + x*
*5*(7*a**6*d**3*e**4 + 42*a**5*b*d**4*e**3 + 63*a**4*b**2*d**5*e**2 + 28*a**3*b**3*d**6*e + 3*a**2*b**4*d**7)
+ x**4*(35*a**6*d**4*e**3/4 + 63*a**5*b*d**5*e**2/2 + 105*a**4*b**2*d**6*e/4 + 5*a**3*b**3*d**7) + x**3*(7*a**
6*d**5*e**2 + 14*a**5*b*d**6*e + 5*a**4*b**2*d**7) + x**2*(7*a**6*d**6*e/2 + 3*a**5*b*d**7)

________________________________________________________________________________________

Giac [B]  time = 1.18343, size = 1030, normalized size = 5.95 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^7*(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="giac")

[Out]

1/14*b^6*x^14*e^7 + 7/13*b^6*d*x^13*e^6 + 7/4*b^6*d^2*x^12*e^5 + 35/11*b^6*d^3*x^11*e^4 + 7/2*b^6*d^4*x^10*e^3
+ 7/3*b^6*d^5*x^9*e^2 + 7/8*b^6*d^6*x^8*e + 1/7*b^6*d^7*x^7 + 6/13*a*b^5*x^13*e^7 + 7/2*a*b^5*d*x^12*e^6 + 12
6/11*a*b^5*d^2*x^11*e^5 + 21*a*b^5*d^3*x^10*e^4 + 70/3*a*b^5*d^4*x^9*e^3 + 63/4*a*b^5*d^5*x^8*e^2 + 6*a*b^5*d^
6*x^7*e + a*b^5*d^7*x^6 + 5/4*a^2*b^4*x^12*e^7 + 105/11*a^2*b^4*d*x^11*e^6 + 63/2*a^2*b^4*d^2*x^10*e^5 + 175/3
*a^2*b^4*d^3*x^9*e^4 + 525/8*a^2*b^4*d^4*x^8*e^3 + 45*a^2*b^4*d^5*x^7*e^2 + 35/2*a^2*b^4*d^6*x^6*e + 3*a^2*b^4
*d^7*x^5 + 20/11*a^3*b^3*x^11*e^7 + 14*a^3*b^3*d*x^10*e^6 + 140/3*a^3*b^3*d^2*x^9*e^5 + 175/2*a^3*b^3*d^3*x^8*
e^4 + 100*a^3*b^3*d^4*x^7*e^3 + 70*a^3*b^3*d^5*x^6*e^2 + 28*a^3*b^3*d^6*x^5*e + 5*a^3*b^3*d^7*x^4 + 3/2*a^4*b^
2*x^10*e^7 + 35/3*a^4*b^2*d*x^9*e^6 + 315/8*a^4*b^2*d^2*x^8*e^5 + 75*a^4*b^2*d^3*x^7*e^4 + 175/2*a^4*b^2*d^4*x
^6*e^3 + 63*a^4*b^2*d^5*x^5*e^2 + 105/4*a^4*b^2*d^6*x^4*e + 5*a^4*b^2*d^7*x^3 + 2/3*a^5*b*x^9*e^7 + 21/4*a^5*b
*d*x^8*e^6 + 18*a^5*b*d^2*x^7*e^5 + 35*a^5*b*d^3*x^6*e^4 + 42*a^5*b*d^4*x^5*e^3 + 63/2*a^5*b*d^5*x^4*e^2 + 14*
a^5*b*d^6*x^3*e + 3*a^5*b*d^7*x^2 + 1/8*a^6*x^8*e^7 + a^6*d*x^7*e^6 + 7/2*a^6*d^2*x^6*e^5 + 7*a^6*d^3*x^5*e^4
+ 35/4*a^6*d^4*x^4*e^3 + 7*a^6*d^5*x^3*e^2 + 7/2*a^6*d^6*x^2*e + a^6*d^7*x