### 3.1380 $$\int \frac{(b d+2 c d x)^{7/2}}{(a+b x+c x^2)^{3/2}} \, dx$$

Optimal. Leaf size=162 $\frac{20 d^{7/2} \left (b^2-4 a c\right )^{5/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right ),-1\right )}{3 \sqrt{a+b x+c x^2}}+\frac{40}{3} c d^3 \sqrt{a+b x+c x^2} \sqrt{b d+2 c d x}-\frac{2 d (b d+2 c d x)^{5/2}}{\sqrt{a+b x+c x^2}}$

[Out]

(-2*d*(b*d + 2*c*d*x)^(5/2))/Sqrt[a + b*x + c*x^2] + (40*c*d^3*Sqrt[b*d + 2*c*d*x]*Sqrt[a + b*x + c*x^2])/3 +
(20*(b^2 - 4*a*c)^(5/4)*d^(7/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d
*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(3*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.142299, antiderivative size = 162, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 28, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.179, Rules used = {686, 692, 691, 689, 221} $\frac{20 d^{7/2} \left (b^2-4 a c\right )^{5/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{3 \sqrt{a+b x+c x^2}}+\frac{40}{3} c d^3 \sqrt{a+b x+c x^2} \sqrt{b d+2 c d x}-\frac{2 d (b d+2 c d x)^{5/2}}{\sqrt{a+b x+c x^2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(b*d + 2*c*d*x)^(7/2)/(a + b*x + c*x^2)^(3/2),x]

[Out]

(-2*d*(b*d + 2*c*d*x)^(5/2))/Sqrt[a + b*x + c*x^2] + (40*c*d^3*Sqrt[b*d + 2*c*d*x]*Sqrt[a + b*x + c*x^2])/3 +
(20*(b^2 - 4*a*c)^(5/4)*d^(7/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d
*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(3*Sqrt[a + b*x + c*x^2])

Rule 686

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d*(d + e*x)^(m - 1)*
(a + b*x + c*x^2)^(p + 1))/(b*(p + 1)), x] - Dist[(d*e*(m - 1))/(b*(p + 1)), Int[(d + e*x)^(m - 2)*(a + b*x +
c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2
*p + 3, 0] && LtQ[p, -1] && GtQ[m, 1] && IntegerQ[2*p]

Rule 692

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*d*(d + e*x)^(m -
1)*(a + b*x + c*x^2)^(p + 1))/(b*(m + 2*p + 1)), x] + Dist[(d^2*(m - 1)*(b^2 - 4*a*c))/(b^2*(m + 2*p + 1)), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && EqQ[m^2, 1/4]

Rule 689

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 -
4*a*c))])/e, Subst[Int[1/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[
{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{(b d+2 c d x)^{7/2}}{\left (a+b x+c x^2\right )^{3/2}} \, dx &=-\frac{2 d (b d+2 c d x)^{5/2}}{\sqrt{a+b x+c x^2}}+\left (10 c d^2\right ) \int \frac{(b d+2 c d x)^{3/2}}{\sqrt{a+b x+c x^2}} \, dx\\ &=-\frac{2 d (b d+2 c d x)^{5/2}}{\sqrt{a+b x+c x^2}}+\frac{40}{3} c d^3 \sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}+\frac{1}{3} \left (10 c \left (b^2-4 a c\right ) d^4\right ) \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}} \, dx\\ &=-\frac{2 d (b d+2 c d x)^{5/2}}{\sqrt{a+b x+c x^2}}+\frac{40}{3} c d^3 \sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}+\frac{\left (10 c \left (b^2-4 a c\right ) d^4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{-\frac{a c}{b^2-4 a c}-\frac{b c x}{b^2-4 a c}-\frac{c^2 x^2}{b^2-4 a c}}} \, dx}{3 \sqrt{a+b x+c x^2}}\\ &=-\frac{2 d (b d+2 c d x)^{5/2}}{\sqrt{a+b x+c x^2}}+\frac{40}{3} c d^3 \sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}+\frac{\left (20 \left (b^2-4 a c\right ) d^3 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{3 \sqrt{a+b x+c x^2}}\\ &=-\frac{2 d (b d+2 c d x)^{5/2}}{\sqrt{a+b x+c x^2}}+\frac{40}{3} c d^3 \sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}+\frac{20 \left (b^2-4 a c\right )^{5/4} d^{7/2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{3 \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.126666, size = 122, normalized size = 0.75 $\frac{2 d^3 \sqrt{d (b+2 c x)} \left (10 \left (b^2-4 a c\right ) \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};\frac{(b+2 c x)^2}{b^2-4 a c}\right )+4 c \left (5 a+2 c x^2\right )-3 b^2+8 b c x\right )}{3 \sqrt{a+x (b+c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(b*d + 2*c*d*x)^(7/2)/(a + b*x + c*x^2)^(3/2),x]

[Out]

(2*d^3*Sqrt[d*(b + 2*c*x)]*(-3*b^2 + 8*b*c*x + 4*c*(5*a + 2*c*x^2) + 10*(b^2 - 4*a*c)*Sqrt[(c*(a + x*(b + c*x)
))/(-b^2 + 4*a*c)]*Hypergeometric2F1[1/4, 1/2, 5/4, (b + 2*c*x)^2/(b^2 - 4*a*c)]))/(3*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.302, size = 366, normalized size = 2.3 \begin{align*} -{\frac{2\,{d}^{3}}{6\,{c}^{2}{x}^{3}+9\,bc{x}^{2}+6\,acx+3\,{b}^{2}x+3\,ab}\sqrt{d \left ( 2\,cx+b \right ) }\sqrt{c{x}^{2}+bx+a} \left ( 20\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticF} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ) \sqrt{-4\,ac+{b}^{2}}ac-5\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticF} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ) \sqrt{-4\,ac+{b}^{2}}{b}^{2}-16\,{c}^{3}{x}^{3}-24\,b{c}^{2}{x}^{2}-40\,xa{c}^{2}-2\,x{b}^{2}c-20\,abc+3\,{b}^{3} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*d*x+b*d)^(7/2)/(c*x^2+b*x+a)^(3/2),x)

[Out]

-2/3*(d*(2*c*x+b))^(1/2)*(c*x^2+b*x+a)^(1/2)*d^3*(20*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(
-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((
b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*(-4*a*c+b^2)^(1/2)*a*c-5*((b+2*c*x+(-4*
a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))
/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/
2))*(-4*a*c+b^2)^(1/2)*b^2-16*c^3*x^3-24*b*c^2*x^2-40*x*a*c^2-2*x*b^2*c-20*a*b*c+3*b^3)/(2*c^2*x^3+3*b*c*x^2+2
*a*c*x+b^2*x+a*b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (2 \, c d x + b d\right )}^{\frac{7}{2}}}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(7/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((2*c*d*x + b*d)^(7/2)/(c*x^2 + b*x + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (8 \, c^{3} d^{3} x^{3} + 12 \, b c^{2} d^{3} x^{2} + 6 \, b^{2} c d^{3} x + b^{3} d^{3}\right )} \sqrt{2 \, c d x + b d} \sqrt{c x^{2} + b x + a}}{c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x +{\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(7/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

integral((8*c^3*d^3*x^3 + 12*b*c^2*d^3*x^2 + 6*b^2*c*d^3*x + b^3*d^3)*sqrt(2*c*d*x + b*d)*sqrt(c*x^2 + b*x + a
)/(c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2*a*c)*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)**(7/2)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (2 \, c d x + b d\right )}^{\frac{7}{2}}}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(7/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

integrate((2*c*d*x + b*d)^(7/2)/(c*x^2 + b*x + a)^(3/2), x)