### 3.1378 $$\int \frac{1}{(3-2 x)^{3/2} \sqrt{1-3 x+x^2}} \, dx$$

Optimal. Leaf size=128 $-\frac{2 \sqrt{-x^2+3 x-1} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right ),-1\right )}{5^{3/4} \sqrt{x^2-3 x+1}}-\frac{4 \sqrt{x^2-3 x+1}}{5 \sqrt{3-2 x}}+\frac{2 \sqrt{-x^2+3 x-1} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right )\right |-1\right )}{5^{3/4} \sqrt{x^2-3 x+1}}$

[Out]

(-4*Sqrt[1 - 3*x + x^2])/(5*Sqrt[3 - 2*x]) + (2*Sqrt[-1 + 3*x - x^2]*EllipticE[ArcSin[Sqrt[3 - 2*x]/5^(1/4)],
-1])/(5^(3/4)*Sqrt[1 - 3*x + x^2]) - (2*Sqrt[-1 + 3*x - x^2]*EllipticF[ArcSin[Sqrt[3 - 2*x]/5^(1/4)], -1])/(5^
(3/4)*Sqrt[1 - 3*x + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0681879, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.364, Rules used = {693, 691, 690, 307, 221, 1181, 21, 424} $-\frac{4 \sqrt{x^2-3 x+1}}{5 \sqrt{3-2 x}}-\frac{2 \sqrt{-x^2+3 x-1} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right )\right |-1\right )}{5^{3/4} \sqrt{x^2-3 x+1}}+\frac{2 \sqrt{-x^2+3 x-1} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right )\right |-1\right )}{5^{3/4} \sqrt{x^2-3 x+1}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((3 - 2*x)^(3/2)*Sqrt[1 - 3*x + x^2]),x]

[Out]

(-4*Sqrt[1 - 3*x + x^2])/(5*Sqrt[3 - 2*x]) + (2*Sqrt[-1 + 3*x - x^2]*EllipticE[ArcSin[Sqrt[3 - 2*x]/5^(1/4)],
-1])/(5^(3/4)*Sqrt[1 - 3*x + x^2]) - (2*Sqrt[-1 + 3*x - x^2]*EllipticF[ArcSin[Sqrt[3 - 2*x]/5^(1/4)], -1])/(5^
(3/4)*Sqrt[1 - 3*x + x^2])

Rule 693

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-2*b*d*(d + e*x)^(m
+ 1)*(a + b*x + c*x^2)^(p + 1))/(d^2*(m + 1)*(b^2 - 4*a*c)), x] + Dist[(b^2*(m + 2*p + 3))/(d^2*(m + 1)*(b^2
- 4*a*c)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*
c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[m, -1] && (IntegerQ[2*p] || (IntegerQ[m] && Rationa
lQ[p]) || IntegerQ[(m + 2*p + 3)/2])

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && EqQ[m^2, 1/4]

Rule 690

Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 - 4*a*
c))])/e, Subst[Int[x^2/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 307

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(b/a), 2]}, -Dist[q^(-1), Int[1/Sqrt[a + b*x^
4], x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 1181

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(a*c), 2]}, Dist[Sqrt[-c], Int
[(d + e*x^2)/(Sqrt[q + c*x^2]*Sqrt[q - c*x^2]), x], x]] /; FreeQ[{a, c, d, e}, x] && GtQ[a, 0] && LtQ[c, 0]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
d*x, a + b*x])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{1}{(3-2 x)^{3/2} \sqrt{1-3 x+x^2}} \, dx &=-\frac{4 \sqrt{1-3 x+x^2}}{5 \sqrt{3-2 x}}-\frac{1}{5} \int \frac{\sqrt{3-2 x}}{\sqrt{1-3 x+x^2}} \, dx\\ &=-\frac{4 \sqrt{1-3 x+x^2}}{5 \sqrt{3-2 x}}-\frac{\sqrt{-1+3 x-x^2} \int \frac{\sqrt{3-2 x}}{\sqrt{-\frac{1}{5}+\frac{3 x}{5}-\frac{x^2}{5}}} \, dx}{5 \sqrt{5} \sqrt{1-3 x+x^2}}\\ &=-\frac{4 \sqrt{1-3 x+x^2}}{5 \sqrt{3-2 x}}+\frac{\left (2 \sqrt{-1+3 x-x^2}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1-\frac{x^4}{5}}} \, dx,x,\sqrt{3-2 x}\right )}{5 \sqrt{5} \sqrt{1-3 x+x^2}}\\ &=-\frac{4 \sqrt{1-3 x+x^2}}{5 \sqrt{3-2 x}}-\frac{\left (2 \sqrt{-1+3 x-x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{5}}} \, dx,x,\sqrt{3-2 x}\right )}{5 \sqrt{1-3 x+x^2}}+\frac{\left (2 \sqrt{-1+3 x-x^2}\right ) \operatorname{Subst}\left (\int \frac{1+\frac{x^2}{\sqrt{5}}}{\sqrt{1-\frac{x^4}{5}}} \, dx,x,\sqrt{3-2 x}\right )}{5 \sqrt{1-3 x+x^2}}\\ &=-\frac{4 \sqrt{1-3 x+x^2}}{5 \sqrt{3-2 x}}-\frac{2 \sqrt{-1+3 x-x^2} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right )\right |-1\right )}{5^{3/4} \sqrt{1-3 x+x^2}}+\frac{\left (2 \sqrt{-1+3 x-x^2}\right ) \operatorname{Subst}\left (\int \frac{1+\frac{x^2}{\sqrt{5}}}{\sqrt{\frac{1}{\sqrt{5}}-\frac{x^2}{5}} \sqrt{\frac{1}{\sqrt{5}}+\frac{x^2}{5}}} \, dx,x,\sqrt{3-2 x}\right )}{5 \sqrt{5} \sqrt{1-3 x+x^2}}\\ &=-\frac{4 \sqrt{1-3 x+x^2}}{5 \sqrt{3-2 x}}-\frac{2 \sqrt{-1+3 x-x^2} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right )\right |-1\right )}{5^{3/4} \sqrt{1-3 x+x^2}}+\frac{\left (2 \sqrt{-1+3 x-x^2}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{\frac{1}{\sqrt{5}}+\frac{x^2}{5}}}{\sqrt{\frac{1}{\sqrt{5}}-\frac{x^2}{5}}} \, dx,x,\sqrt{3-2 x}\right )}{5 \sqrt{1-3 x+x^2}}\\ &=-\frac{4 \sqrt{1-3 x+x^2}}{5 \sqrt{3-2 x}}+\frac{2 \sqrt{-1+3 x-x^2} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right )\right |-1\right )}{5^{3/4} \sqrt{1-3 x+x^2}}-\frac{2 \sqrt{-1+3 x-x^2} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right )\right |-1\right )}{5^{3/4} \sqrt{1-3 x+x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0129933, size = 63, normalized size = 0.49 $\frac{2 \sqrt{-x^2+3 x-1} \, _2F_1\left (-\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{1}{5} (3-2 x)^2\right )}{\sqrt{5} \sqrt{3-2 x} \sqrt{x^2-3 x+1}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((3 - 2*x)^(3/2)*Sqrt[1 - 3*x + x^2]),x]

[Out]

(2*Sqrt[-1 + 3*x - x^2]*Hypergeometric2F1[-1/4, 1/2, 3/4, (3 - 2*x)^2/5])/(Sqrt[5]*Sqrt[3 - 2*x]*Sqrt[1 - 3*x
+ x^2])

________________________________________________________________________________________

Maple [A]  time = 0.174, size = 116, normalized size = 0.9 \begin{align*}{\frac{1}{50\,{x}^{3}-225\,{x}^{2}+275\,x-75}\sqrt{3-2\,x}\sqrt{{x}^{2}-3\,x+1} \left ( \sqrt{ \left ( -2\,x+3+\sqrt{5} \right ) \sqrt{5}}\sqrt{ \left ( -3+2\,x \right ) \sqrt{5}}\sqrt{ \left ( 2\,x-3+\sqrt{5} \right ) \sqrt{5}}{\it EllipticE} \left ({\frac{\sqrt{2}\sqrt{5}}{10}\sqrt{ \left ( -2\,x+3+\sqrt{5} \right ) \sqrt{5}}},\sqrt{2} \right ) \sqrt{5}+20\,{x}^{2}-60\,x+20 \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3-2*x)^(3/2)/(x^2-3*x+1)^(1/2),x)

[Out]

1/25*(3-2*x)^(1/2)*(x^2-3*x+1)^(1/2)*(((-2*x+3+5^(1/2))*5^(1/2))^(1/2)*((-3+2*x)*5^(1/2))^(1/2)*((2*x-3+5^(1/2
))*5^(1/2))^(1/2)*EllipticE(1/10*2^(1/2)*5^(1/2)*((-2*x+3+5^(1/2))*5^(1/2))^(1/2),2^(1/2))*5^(1/2)+20*x^2-60*x
+20)/(2*x^3-9*x^2+11*x-3)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{2} - 3 \, x + 1}{\left (-2 \, x + 3\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-2*x)^(3/2)/(x^2-3*x+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^2 - 3*x + 1)*(-2*x + 3)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{2} - 3 \, x + 1} \sqrt{-2 \, x + 3}}{4 \, x^{4} - 24 \, x^{3} + 49 \, x^{2} - 39 \, x + 9}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-2*x)^(3/2)/(x^2-3*x+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^2 - 3*x + 1)*sqrt(-2*x + 3)/(4*x^4 - 24*x^3 + 49*x^2 - 39*x + 9), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (3 - 2 x\right )^{\frac{3}{2}} \sqrt{x^{2} - 3 x + 1}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-2*x)**(3/2)/(x**2-3*x+1)**(1/2),x)

[Out]

Integral(1/((3 - 2*x)**(3/2)*sqrt(x**2 - 3*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{2} - 3 \, x + 1}{\left (-2 \, x + 3\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-2*x)^(3/2)/(x^2-3*x+1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^2 - 3*x + 1)*(-2*x + 3)^(3/2)), x)