### 3.1374 $$\int \frac{1}{\sqrt{3-2 x} \sqrt{1-3 x+x^2}} \, dx$$

Optimal. Leaf size=51 $-\frac{2 \sqrt{-x^2+3 x-1} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right ),-1\right )}{\sqrt [4]{5} \sqrt{x^2-3 x+1}}$

[Out]

(-2*Sqrt[-1 + 3*x - x^2]*EllipticF[ArcSin[Sqrt[3 - 2*x]/5^(1/4)], -1])/(5^(1/4)*Sqrt[1 - 3*x + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0240225, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.136, Rules used = {691, 689, 221} $-\frac{2 \sqrt{-x^2+3 x-1} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right )\right |-1\right )}{\sqrt [4]{5} \sqrt{x^2-3 x+1}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(Sqrt[3 - 2*x]*Sqrt[1 - 3*x + x^2]),x]

[Out]

(-2*Sqrt[-1 + 3*x - x^2]*EllipticF[ArcSin[Sqrt[3 - 2*x]/5^(1/4)], -1])/(5^(1/4)*Sqrt[1 - 3*x + x^2])

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && EqQ[m^2, 1/4]

Rule 689

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 -
4*a*c))])/e, Subst[Int[1/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[
{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{3-2 x} \sqrt{1-3 x+x^2}} \, dx &=\frac{\sqrt{-1+3 x-x^2} \int \frac{1}{\sqrt{3-2 x} \sqrt{-\frac{1}{5}+\frac{3 x}{5}-\frac{x^2}{5}}} \, dx}{\sqrt{5} \sqrt{1-3 x+x^2}}\\ &=-\frac{\left (2 \sqrt{-1+3 x-x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{5}}} \, dx,x,\sqrt{3-2 x}\right )}{\sqrt{5} \sqrt{1-3 x+x^2}}\\ &=-\frac{2 \sqrt{-1+3 x-x^2} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{3-2 x}}{\sqrt [4]{5}}\right )\right |-1\right )}{\sqrt [4]{5} \sqrt{1-3 x+x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0138915, size = 63, normalized size = 1.24 $-\frac{2 \sqrt{3-2 x} \sqrt{-x^2+3 x-1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};\frac{1}{5} (3-2 x)^2\right )}{\sqrt{5} \sqrt{x^2-3 x+1}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(Sqrt[3 - 2*x]*Sqrt[1 - 3*x + x^2]),x]

[Out]

(-2*Sqrt[3 - 2*x]*Sqrt[-1 + 3*x - x^2]*Hypergeometric2F1[1/4, 1/2, 5/4, (3 - 2*x)^2/5])/(Sqrt[5]*Sqrt[1 - 3*x
+ x^2])

________________________________________________________________________________________

Maple [B]  time = 0.162, size = 102, normalized size = 2. \begin{align*}{\frac{1}{10\,{x}^{3}-45\,{x}^{2}+55\,x-15}\sqrt{3-2\,x}\sqrt{{x}^{2}-3\,x+1}\sqrt{ \left ( -2\,x+3+\sqrt{5} \right ) \sqrt{5}}\sqrt{ \left ( -3+2\,x \right ) \sqrt{5}}\sqrt{ \left ( 2\,x-3+\sqrt{5} \right ) \sqrt{5}}{\it EllipticF} \left ({\frac{\sqrt{2}\sqrt{5}}{10}\sqrt{ \left ( -2\,x+3+\sqrt{5} \right ) \sqrt{5}}},\sqrt{2} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3-2*x)^(1/2)/(x^2-3*x+1)^(1/2),x)

[Out]

1/5*(3-2*x)^(1/2)*(x^2-3*x+1)^(1/2)*((-2*x+3+5^(1/2))*5^(1/2))^(1/2)*((-3+2*x)*5^(1/2))^(1/2)*((2*x-3+5^(1/2))
*5^(1/2))^(1/2)*EllipticF(1/10*2^(1/2)*5^(1/2)*((-2*x+3+5^(1/2))*5^(1/2))^(1/2),2^(1/2))/(2*x^3-9*x^2+11*x-3)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{2} - 3 \, x + 1} \sqrt{-2 \, x + 3}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-2*x)^(1/2)/(x^2-3*x+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^2 - 3*x + 1)*sqrt(-2*x + 3)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{x^{2} - 3 \, x + 1} \sqrt{-2 \, x + 3}}{2 \, x^{3} - 9 \, x^{2} + 11 \, x - 3}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-2*x)^(1/2)/(x^2-3*x+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(x^2 - 3*x + 1)*sqrt(-2*x + 3)/(2*x^3 - 9*x^2 + 11*x - 3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{3 - 2 x} \sqrt{x^{2} - 3 x + 1}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-2*x)**(1/2)/(x**2-3*x+1)**(1/2),x)

[Out]

Integral(1/(sqrt(3 - 2*x)*sqrt(x**2 - 3*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{2} - 3 \, x + 1} \sqrt{-2 \, x + 3}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3-2*x)^(1/2)/(x^2-3*x+1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^2 - 3*x + 1)*sqrt(-2*x + 3)), x)