### 3.1368 $$\int \frac{(b d+2 c d x)^{9/2}}{\sqrt{a+b x+c x^2}} \, dx$$

Optimal. Leaf size=273 $-\frac{14 d^{9/2} \left (b^2-4 a c\right )^{11/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right ),-1\right )}{15 c \sqrt{a+b x+c x^2}}+\frac{28}{45} d^3 \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2} (b d+2 c d x)^{3/2}+\frac{14 d^{9/2} \left (b^2-4 a c\right )^{11/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{15 c \sqrt{a+b x+c x^2}}+\frac{4}{9} d \sqrt{a+b x+c x^2} (b d+2 c d x)^{7/2}$

[Out]

(28*(b^2 - 4*a*c)*d^3*(b*d + 2*c*d*x)^(3/2)*Sqrt[a + b*x + c*x^2])/45 + (4*d*(b*d + 2*c*d*x)^(7/2)*Sqrt[a + b*
x + c*x^2])/9 + (14*(b^2 - 4*a*c)^(11/4)*d^(9/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin
[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(15*c*Sqrt[a + b*x + c*x^2]) - (14*(b^2 - 4*a*c)^(11
/4)*d^(9/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(
1/4)*Sqrt[d])], -1])/(15*c*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.25192, antiderivative size = 273, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 28, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.25, Rules used = {692, 691, 690, 307, 221, 1199, 424} $\frac{28}{45} d^3 \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2} (b d+2 c d x)^{3/2}-\frac{14 d^{9/2} \left (b^2-4 a c\right )^{11/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{15 c \sqrt{a+b x+c x^2}}+\frac{14 d^{9/2} \left (b^2-4 a c\right )^{11/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{15 c \sqrt{a+b x+c x^2}}+\frac{4}{9} d \sqrt{a+b x+c x^2} (b d+2 c d x)^{7/2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(b*d + 2*c*d*x)^(9/2)/Sqrt[a + b*x + c*x^2],x]

[Out]

(28*(b^2 - 4*a*c)*d^3*(b*d + 2*c*d*x)^(3/2)*Sqrt[a + b*x + c*x^2])/45 + (4*d*(b*d + 2*c*d*x)^(7/2)*Sqrt[a + b*
x + c*x^2])/9 + (14*(b^2 - 4*a*c)^(11/4)*d^(9/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin
[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(15*c*Sqrt[a + b*x + c*x^2]) - (14*(b^2 - 4*a*c)^(11
/4)*d^(9/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(
1/4)*Sqrt[d])], -1])/(15*c*Sqrt[a + b*x + c*x^2])

Rule 692

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*d*(d + e*x)^(m -
1)*(a + b*x + c*x^2)^(p + 1))/(b*(m + 2*p + 1)), x] + Dist[(d^2*(m - 1)*(b^2 - 4*a*c))/(b^2*(m + 2*p + 1)), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && EqQ[m^2, 1/4]

Rule 690

Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 - 4*a*
c))])/e, Subst[Int[x^2/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 307

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(b/a), 2]}, -Dist[q^(-1), Int[1/Sqrt[a + b*x^
4], x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 1199

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + (e*x^2)/d]/Sqrt
[1 - (e*x^2)/d], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{(b d+2 c d x)^{9/2}}{\sqrt{a+b x+c x^2}} \, dx &=\frac{4}{9} d (b d+2 c d x)^{7/2} \sqrt{a+b x+c x^2}+\frac{1}{9} \left (7 \left (b^2-4 a c\right ) d^2\right ) \int \frac{(b d+2 c d x)^{5/2}}{\sqrt{a+b x+c x^2}} \, dx\\ &=\frac{28}{45} \left (b^2-4 a c\right ) d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{4}{9} d (b d+2 c d x)^{7/2} \sqrt{a+b x+c x^2}+\frac{1}{15} \left (7 \left (b^2-4 a c\right )^2 d^4\right ) \int \frac{\sqrt{b d+2 c d x}}{\sqrt{a+b x+c x^2}} \, dx\\ &=\frac{28}{45} \left (b^2-4 a c\right ) d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{4}{9} d (b d+2 c d x)^{7/2} \sqrt{a+b x+c x^2}+\frac{\left (7 \left (b^2-4 a c\right )^2 d^4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac{\sqrt{b d+2 c d x}}{\sqrt{-\frac{a c}{b^2-4 a c}-\frac{b c x}{b^2-4 a c}-\frac{c^2 x^2}{b^2-4 a c}}} \, dx}{15 \sqrt{a+b x+c x^2}}\\ &=\frac{28}{45} \left (b^2-4 a c\right ) d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{4}{9} d (b d+2 c d x)^{7/2} \sqrt{a+b x+c x^2}+\frac{\left (14 \left (b^2-4 a c\right )^2 d^3 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{15 c \sqrt{a+b x+c x^2}}\\ &=\frac{28}{45} \left (b^2-4 a c\right ) d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{4}{9} d (b d+2 c d x)^{7/2} \sqrt{a+b x+c x^2}-\frac{\left (14 \left (b^2-4 a c\right )^{5/2} d^4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{15 c \sqrt{a+b x+c x^2}}+\frac{\left (14 \left (b^2-4 a c\right )^{5/2} d^4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1+\frac{x^2}{\sqrt{b^2-4 a c} d}}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{15 c \sqrt{a+b x+c x^2}}\\ &=\frac{28}{45} \left (b^2-4 a c\right ) d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{4}{9} d (b d+2 c d x)^{7/2} \sqrt{a+b x+c x^2}-\frac{14 \left (b^2-4 a c\right )^{11/4} d^{9/2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{15 c \sqrt{a+b x+c x^2}}+\frac{\left (14 \left (b^2-4 a c\right )^{5/2} d^4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{x^2}{\sqrt{b^2-4 a c} d}}}{\sqrt{1-\frac{x^2}{\sqrt{b^2-4 a c} d}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{15 c \sqrt{a+b x+c x^2}}\\ &=\frac{28}{45} \left (b^2-4 a c\right ) d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{4}{9} d (b d+2 c d x)^{7/2} \sqrt{a+b x+c x^2}+\frac{14 \left (b^2-4 a c\right )^{11/4} d^{9/2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{15 c \sqrt{a+b x+c x^2}}-\frac{14 \left (b^2-4 a c\right )^{11/4} d^{9/2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{15 c \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.201675, size = 167, normalized size = 0.61 $\frac{2 d^3 (d (b+2 c x))^{3/2} \left (8 c \left (-7 a^2 c+a \left (3 b^2-2 b c x-2 c^2 x^2\right )+x \left (8 b^2 c x+3 b^3+10 b c^2 x^2+5 c^3 x^3\right )\right )+7 \left (b^2-4 a c\right )^2 \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};\frac{(b+2 c x)^2}{b^2-4 a c}\right )\right )}{45 c \sqrt{a+x (b+c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(b*d + 2*c*d*x)^(9/2)/Sqrt[a + b*x + c*x^2],x]

[Out]

(2*d^3*(d*(b + 2*c*x))^(3/2)*(8*c*(-7*a^2*c + a*(3*b^2 - 2*b*c*x - 2*c^2*x^2) + x*(3*b^3 + 8*b^2*c*x + 10*b*c^
2*x^2 + 5*c^3*x^3)) + 7*(b^2 - 4*a*c)^2*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]*Hypergeometric2F1[1/2, 3/4,
7/4, (b + 2*c*x)^2/(b^2 - 4*a*c)]))/(45*c*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.23, size = 703, normalized size = 2.6 \begin{align*}{\frac{{d}^{4}}{45\,c \left ( 2\,{c}^{2}{x}^{3}+3\,bc{x}^{2}+2\,acx+{b}^{2}x+ab \right ) }\sqrt{d \left ( 2\,cx+b \right ) }\sqrt{c{x}^{2}+bx+a} \left ( 320\,{x}^{6}{c}^{6}+960\,{x}^{5}b{c}^{5}+1344\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticE} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ){a}^{3}{c}^{3}-1008\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticE} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ){a}^{2}{b}^{2}{c}^{2}+252\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticE} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ) a{b}^{4}c-21\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticE} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ){b}^{6}-128\,{x}^{4}a{c}^{5}+1232\,{x}^{4}{b}^{2}{c}^{4}-256\,{x}^{3}ab{c}^{4}+864\,{x}^{3}{b}^{3}{c}^{3}-448\,{x}^{2}{a}^{2}{c}^{4}+32\,{x}^{2}a{b}^{2}{c}^{3}+320\,{x}^{2}{b}^{4}{c}^{2}-448\,x{a}^{2}b{c}^{3}+160\,xa{b}^{3}{c}^{2}+48\,x{b}^{5}c-112\,{a}^{2}{b}^{2}{c}^{2}+48\,a{b}^{4}c \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x)

[Out]

1/45*(d*(2*c*x+b))^(1/2)*(c*x^2+b*x+a)^(1/2)*d^4*(320*x^6*c^6+960*x^5*b*c^5+1344*((b+2*c*x+(-4*a*c+b^2)^(1/2))
/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(
1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a^3*c^3-100
8*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4
*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/
2)*2^(1/2),2^(1/2))*a^2*b^2*c^2+252*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*
c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b
^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a*b^4*c-21*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1
/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*Elli
pticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*b^6-128*x^4*a*c^5+1232*x^4*
b^2*c^4-256*x^3*a*b*c^4+864*x^3*b^3*c^3-448*x^2*a^2*c^4+32*x^2*a*b^2*c^3+320*x^2*b^4*c^2-448*x*a^2*b*c^3+160*x
*a*b^3*c^2+48*x*b^5*c-112*a^2*b^2*c^2+48*a*b^4*c)/c/(2*c^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (2 \, c d x + b d\right )}^{\frac{9}{2}}}{\sqrt{c x^{2} + b x + a}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((2*c*d*x + b*d)^(9/2)/sqrt(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (16 \, c^{4} d^{4} x^{4} + 32 \, b c^{3} d^{4} x^{3} + 24 \, b^{2} c^{2} d^{4} x^{2} + 8 \, b^{3} c d^{4} x + b^{4} d^{4}\right )} \sqrt{2 \, c d x + b d}}{\sqrt{c x^{2} + b x + a}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

integral((16*c^4*d^4*x^4 + 32*b*c^3*d^4*x^3 + 24*b^2*c^2*d^4*x^2 + 8*b^3*c*d^4*x + b^4*d^4)*sqrt(2*c*d*x + b*d
)/sqrt(c*x^2 + b*x + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)**(9/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (2 \, c d x + b d\right )}^{\frac{9}{2}}}{\sqrt{c x^{2} + b x + a}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate((2*c*d*x + b*d)^(9/2)/sqrt(c*x^2 + b*x + a), x)