### 3.1367 $$\int \frac{1}{(b d+2 c d x)^{9/2} \sqrt{a+b x+c x^2}} \, dx$$

Optimal. Leaf size=188 $\frac{10 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right ),-1\right )}{21 c d^{9/2} \left (b^2-4 a c\right )^{7/4} \sqrt{a+b x+c x^2}}+\frac{20 \sqrt{a+b x+c x^2}}{21 d^3 \left (b^2-4 a c\right )^2 (b d+2 c d x)^{3/2}}+\frac{4 \sqrt{a+b x+c x^2}}{7 d \left (b^2-4 a c\right ) (b d+2 c d x)^{7/2}}$

[Out]

(4*Sqrt[a + b*x + c*x^2])/(7*(b^2 - 4*a*c)*d*(b*d + 2*c*d*x)^(7/2)) + (20*Sqrt[a + b*x + c*x^2])/(21*(b^2 - 4*
a*c)^2*d^3*(b*d + 2*c*d*x)^(3/2)) + (10*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d
+ 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(21*c*(b^2 - 4*a*c)^(7/4)*d^(9/2)*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.146826, antiderivative size = 188, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 28, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.143, Rules used = {693, 691, 689, 221} $\frac{20 \sqrt{a+b x+c x^2}}{21 d^3 \left (b^2-4 a c\right )^2 (b d+2 c d x)^{3/2}}+\frac{10 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{21 c d^{9/2} \left (b^2-4 a c\right )^{7/4} \sqrt{a+b x+c x^2}}+\frac{4 \sqrt{a+b x+c x^2}}{7 d \left (b^2-4 a c\right ) (b d+2 c d x)^{7/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((b*d + 2*c*d*x)^(9/2)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(4*Sqrt[a + b*x + c*x^2])/(7*(b^2 - 4*a*c)*d*(b*d + 2*c*d*x)^(7/2)) + (20*Sqrt[a + b*x + c*x^2])/(21*(b^2 - 4*
a*c)^2*d^3*(b*d + 2*c*d*x)^(3/2)) + (10*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d
+ 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(21*c*(b^2 - 4*a*c)^(7/4)*d^(9/2)*Sqrt[a + b*x + c*x^2])

Rule 693

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-2*b*d*(d + e*x)^(m
+ 1)*(a + b*x + c*x^2)^(p + 1))/(d^2*(m + 1)*(b^2 - 4*a*c)), x] + Dist[(b^2*(m + 2*p + 3))/(d^2*(m + 1)*(b^2
- 4*a*c)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*
c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[m, -1] && (IntegerQ[2*p] || (IntegerQ[m] && Rationa
lQ[p]) || IntegerQ[(m + 2*p + 3)/2])

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && EqQ[m^2, 1/4]

Rule 689

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 -
4*a*c))])/e, Subst[Int[1/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[
{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{1}{(b d+2 c d x)^{9/2} \sqrt{a+b x+c x^2}} \, dx &=\frac{4 \sqrt{a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac{5 \int \frac{1}{(b d+2 c d x)^{5/2} \sqrt{a+b x+c x^2}} \, dx}{7 \left (b^2-4 a c\right ) d^2}\\ &=\frac{4 \sqrt{a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac{20 \sqrt{a+b x+c x^2}}{21 \left (b^2-4 a c\right )^2 d^3 (b d+2 c d x)^{3/2}}+\frac{5 \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}} \, dx}{21 \left (b^2-4 a c\right )^2 d^4}\\ &=\frac{4 \sqrt{a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac{20 \sqrt{a+b x+c x^2}}{21 \left (b^2-4 a c\right )^2 d^3 (b d+2 c d x)^{3/2}}+\frac{\left (5 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{-\frac{a c}{b^2-4 a c}-\frac{b c x}{b^2-4 a c}-\frac{c^2 x^2}{b^2-4 a c}}} \, dx}{21 \left (b^2-4 a c\right )^2 d^4 \sqrt{a+b x+c x^2}}\\ &=\frac{4 \sqrt{a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac{20 \sqrt{a+b x+c x^2}}{21 \left (b^2-4 a c\right )^2 d^3 (b d+2 c d x)^{3/2}}+\frac{\left (10 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{21 c \left (b^2-4 a c\right )^2 d^5 \sqrt{a+b x+c x^2}}\\ &=\frac{4 \sqrt{a+b x+c x^2}}{7 \left (b^2-4 a c\right ) d (b d+2 c d x)^{7/2}}+\frac{20 \sqrt{a+b x+c x^2}}{21 \left (b^2-4 a c\right )^2 d^3 (b d+2 c d x)^{3/2}}+\frac{10 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{21 c \left (b^2-4 a c\right )^{7/4} d^{9/2} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0747777, size = 99, normalized size = 0.53 $-\frac{2 \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}} \sqrt{d (b+2 c x)} \, _2F_1\left (-\frac{7}{4},\frac{1}{2};-\frac{3}{4};\frac{(b+2 c x)^2}{b^2-4 a c}\right )}{7 c d^5 (b+2 c x)^4 \sqrt{a+x (b+c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((b*d + 2*c*d*x)^(9/2)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(-2*Sqrt[d*(b + 2*c*x)]*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]*Hypergeometric2F1[-7/4, 1/2, -3/4, (b + 2*c
*x)^2/(b^2 - 4*a*c)])/(7*c*d^5*(b + 2*c*x)^4*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.224, size = 691, normalized size = 3.7 \begin{align*}{\frac{1}{21\,{d}^{5} \left ( 2\,{c}^{2}{x}^{3}+3\,bc{x}^{2}+2\,acx+{b}^{2}x+ab \right ) \left ( 4\,ac-{b}^{2} \right ) ^{2} \left ( 2\,cx+b \right ) ^{3}c}\sqrt{d \left ( 2\,cx+b \right ) }\sqrt{c{x}^{2}+bx+a} \left ( 40\,\sqrt{-4\,ac+{b}^{2}}\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticF} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ){x}^{3}{c}^{3}+60\,\sqrt{-4\,ac+{b}^{2}}\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticF} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ){x}^{2}b{c}^{2}+30\,\sqrt{-4\,ac+{b}^{2}}\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticF} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ) x{b}^{2}c+5\,\sqrt{-4\,ac+{b}^{2}}\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticF} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ){b}^{3}+80\,{c}^{4}{x}^{4}+160\,b{c}^{3}{x}^{3}+32\,{x}^{2}a{c}^{3}+112\,{x}^{2}{b}^{2}{c}^{2}+32\,ba{c}^{2}x+32\,{b}^{3}cx-48\,{a}^{2}{c}^{2}+32\,ac{b}^{2} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x)

[Out]

1/21*(d*(2*c*x+b))^(1/2)*(c*x^2+b*x+a)^(1/2)*(40*(-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)
^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*E
llipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x^3*c^3+60*(-4*a*c+b^2)^
(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x
+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))
^(1/2)*2^(1/2),2^(1/2))*x^2*b*c^2+30*(-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2
)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2
*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x*b^2*c+5*(-4*a*c+b^2)^(1/2)*((b+2*c
*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)
^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2
),2^(1/2))*b^3+80*c^4*x^4+160*b*c^3*x^3+32*x^2*a*c^3+112*x^2*b^2*c^2+32*b*a*c^2*x+32*b^3*c*x-48*a^2*c^2+32*a*c
*b^2)/d^5/(2*c^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)/(4*a*c-b^2)^2/(2*c*x+b)^3/c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (2 \, c d x + b d\right )}^{\frac{9}{2}} \sqrt{c x^{2} + b x + a}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((2*c*d*x + b*d)^(9/2)*sqrt(c*x^2 + b*x + a)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{2 \, c d x + b d} \sqrt{c x^{2} + b x + a}}{32 \, c^{6} d^{5} x^{7} + 112 \, b c^{5} d^{5} x^{6} + a b^{5} d^{5} + 32 \,{\left (5 \, b^{2} c^{4} + a c^{5}\right )} d^{5} x^{5} + 40 \,{\left (3 \, b^{3} c^{3} + 2 \, a b c^{4}\right )} d^{5} x^{4} + 10 \,{\left (5 \, b^{4} c^{2} + 8 \, a b^{2} c^{3}\right )} d^{5} x^{3} +{\left (11 \, b^{5} c + 40 \, a b^{3} c^{2}\right )} d^{5} x^{2} +{\left (b^{6} + 10 \, a b^{4} c\right )} d^{5} x}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(2*c*d*x + b*d)*sqrt(c*x^2 + b*x + a)/(32*c^6*d^5*x^7 + 112*b*c^5*d^5*x^6 + a*b^5*d^5 + 32*(5*b^2
*c^4 + a*c^5)*d^5*x^5 + 40*(3*b^3*c^3 + 2*a*b*c^4)*d^5*x^4 + 10*(5*b^4*c^2 + 8*a*b^2*c^3)*d^5*x^3 + (11*b^5*c
+ 40*a*b^3*c^2)*d^5*x^2 + (b^6 + 10*a*b^4*c)*d^5*x), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)**(9/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (2 \, c d x + b d\right )}^{\frac{9}{2}} \sqrt{c x^{2} + b x + a}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((2*c*d*x + b*d)^(9/2)*sqrt(c*x^2 + b*x + a)), x)