### 3.1356 $$\int \frac{(a+b x+c x^2)^{5/2}}{(b d+2 c d x)^{21/2}} \, dx$$

Optimal. Leaf size=305 $\frac{5 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right ),-1\right )}{17556 c^4 d^{21/2} \left (b^2-4 a c\right )^{7/4} \sqrt{a+b x+c x^2}}+\frac{5 \sqrt{a+b x+c x^2}}{8778 c^3 d^9 \left (b^2-4 a c\right )^2 (b d+2 c d x)^{3/2}}+\frac{\sqrt{a+b x+c x^2}}{2926 c^3 d^7 \left (b^2-4 a c\right ) (b d+2 c d x)^{7/2}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{114 c^2 d^3 (b d+2 c d x)^{15/2}}-\frac{\sqrt{a+b x+c x^2}}{836 c^3 d^5 (b d+2 c d x)^{11/2}}-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}$

[Out]

-Sqrt[a + b*x + c*x^2]/(836*c^3*d^5*(b*d + 2*c*d*x)^(11/2)) + Sqrt[a + b*x + c*x^2]/(2926*c^3*(b^2 - 4*a*c)*d^
7*(b*d + 2*c*d*x)^(7/2)) + (5*Sqrt[a + b*x + c*x^2])/(8778*c^3*(b^2 - 4*a*c)^2*d^9*(b*d + 2*c*d*x)^(3/2)) - (a
+ b*x + c*x^2)^(3/2)/(114*c^2*d^3*(b*d + 2*c*d*x)^(15/2)) - (a + b*x + c*x^2)^(5/2)/(19*c*d*(b*d + 2*c*d*x)^(
19/2)) + (5*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(
1/4)*Sqrt[d])], -1])/(17556*c^4*(b^2 - 4*a*c)^(7/4)*d^(21/2)*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.262961, antiderivative size = 305, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 28, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.179, Rules used = {684, 693, 691, 689, 221} $\frac{5 \sqrt{a+b x+c x^2}}{8778 c^3 d^9 \left (b^2-4 a c\right )^2 (b d+2 c d x)^{3/2}}+\frac{\sqrt{a+b x+c x^2}}{2926 c^3 d^7 \left (b^2-4 a c\right ) (b d+2 c d x)^{7/2}}+\frac{5 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{17556 c^4 d^{21/2} \left (b^2-4 a c\right )^{7/4} \sqrt{a+b x+c x^2}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{114 c^2 d^3 (b d+2 c d x)^{15/2}}-\frac{\sqrt{a+b x+c x^2}}{836 c^3 d^5 (b d+2 c d x)^{11/2}}-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a + b*x + c*x^2)^(5/2)/(b*d + 2*c*d*x)^(21/2),x]

[Out]

-Sqrt[a + b*x + c*x^2]/(836*c^3*d^5*(b*d + 2*c*d*x)^(11/2)) + Sqrt[a + b*x + c*x^2]/(2926*c^3*(b^2 - 4*a*c)*d^
7*(b*d + 2*c*d*x)^(7/2)) + (5*Sqrt[a + b*x + c*x^2])/(8778*c^3*(b^2 - 4*a*c)^2*d^9*(b*d + 2*c*d*x)^(3/2)) - (a
+ b*x + c*x^2)^(3/2)/(114*c^2*d^3*(b*d + 2*c*d*x)^(15/2)) - (a + b*x + c*x^2)^(5/2)/(19*c*d*(b*d + 2*c*d*x)^(
19/2)) + (5*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(
1/4)*Sqrt[d])], -1])/(17556*c^4*(b^2 - 4*a*c)^(7/4)*d^(21/2)*Sqrt[a + b*x + c*x^2])

Rule 684

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[(b*p)/(d*e*(m + 1)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1
), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] &&
GtQ[p, 0] && LtQ[m, -1] &&  !(IntegerQ[m/2] && LtQ[m + 2*p + 3, 0]) && IntegerQ[2*p]

Rule 693

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-2*b*d*(d + e*x)^(m
+ 1)*(a + b*x + c*x^2)^(p + 1))/(d^2*(m + 1)*(b^2 - 4*a*c)), x] + Dist[(b^2*(m + 2*p + 3))/(d^2*(m + 1)*(b^2
- 4*a*c)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*
c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[m, -1] && (IntegerQ[2*p] || (IntegerQ[m] && Rationa
lQ[p]) || IntegerQ[(m + 2*p + 3)/2])

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && EqQ[m^2, 1/4]

Rule 689

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 -
4*a*c))])/e, Subst[Int[1/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[
{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{\left (a+b x+c x^2\right )^{5/2}}{(b d+2 c d x)^{21/2}} \, dx &=-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}+\frac{5 \int \frac{\left (a+b x+c x^2\right )^{3/2}}{(b d+2 c d x)^{17/2}} \, dx}{38 c d^2}\\ &=-\frac{\left (a+b x+c x^2\right )^{3/2}}{114 c^2 d^3 (b d+2 c d x)^{15/2}}-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}+\frac{\int \frac{\sqrt{a+b x+c x^2}}{(b d+2 c d x)^{13/2}} \, dx}{76 c^2 d^4}\\ &=-\frac{\sqrt{a+b x+c x^2}}{836 c^3 d^5 (b d+2 c d x)^{11/2}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{114 c^2 d^3 (b d+2 c d x)^{15/2}}-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}+\frac{\int \frac{1}{(b d+2 c d x)^{9/2} \sqrt{a+b x+c x^2}} \, dx}{1672 c^3 d^6}\\ &=-\frac{\sqrt{a+b x+c x^2}}{836 c^3 d^5 (b d+2 c d x)^{11/2}}+\frac{\sqrt{a+b x+c x^2}}{2926 c^3 \left (b^2-4 a c\right ) d^7 (b d+2 c d x)^{7/2}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{114 c^2 d^3 (b d+2 c d x)^{15/2}}-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}+\frac{5 \int \frac{1}{(b d+2 c d x)^{5/2} \sqrt{a+b x+c x^2}} \, dx}{11704 c^3 \left (b^2-4 a c\right ) d^8}\\ &=-\frac{\sqrt{a+b x+c x^2}}{836 c^3 d^5 (b d+2 c d x)^{11/2}}+\frac{\sqrt{a+b x+c x^2}}{2926 c^3 \left (b^2-4 a c\right ) d^7 (b d+2 c d x)^{7/2}}+\frac{5 \sqrt{a+b x+c x^2}}{8778 c^3 \left (b^2-4 a c\right )^2 d^9 (b d+2 c d x)^{3/2}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{114 c^2 d^3 (b d+2 c d x)^{15/2}}-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}+\frac{5 \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}} \, dx}{35112 c^3 \left (b^2-4 a c\right )^2 d^{10}}\\ &=-\frac{\sqrt{a+b x+c x^2}}{836 c^3 d^5 (b d+2 c d x)^{11/2}}+\frac{\sqrt{a+b x+c x^2}}{2926 c^3 \left (b^2-4 a c\right ) d^7 (b d+2 c d x)^{7/2}}+\frac{5 \sqrt{a+b x+c x^2}}{8778 c^3 \left (b^2-4 a c\right )^2 d^9 (b d+2 c d x)^{3/2}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{114 c^2 d^3 (b d+2 c d x)^{15/2}}-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}+\frac{\left (5 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{-\frac{a c}{b^2-4 a c}-\frac{b c x}{b^2-4 a c}-\frac{c^2 x^2}{b^2-4 a c}}} \, dx}{35112 c^3 \left (b^2-4 a c\right )^2 d^{10} \sqrt{a+b x+c x^2}}\\ &=-\frac{\sqrt{a+b x+c x^2}}{836 c^3 d^5 (b d+2 c d x)^{11/2}}+\frac{\sqrt{a+b x+c x^2}}{2926 c^3 \left (b^2-4 a c\right ) d^7 (b d+2 c d x)^{7/2}}+\frac{5 \sqrt{a+b x+c x^2}}{8778 c^3 \left (b^2-4 a c\right )^2 d^9 (b d+2 c d x)^{3/2}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{114 c^2 d^3 (b d+2 c d x)^{15/2}}-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}+\frac{\left (5 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{17556 c^4 \left (b^2-4 a c\right )^2 d^{11} \sqrt{a+b x+c x^2}}\\ &=-\frac{\sqrt{a+b x+c x^2}}{836 c^3 d^5 (b d+2 c d x)^{11/2}}+\frac{\sqrt{a+b x+c x^2}}{2926 c^3 \left (b^2-4 a c\right ) d^7 (b d+2 c d x)^{7/2}}+\frac{5 \sqrt{a+b x+c x^2}}{8778 c^3 \left (b^2-4 a c\right )^2 d^9 (b d+2 c d x)^{3/2}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{114 c^2 d^3 (b d+2 c d x)^{15/2}}-\frac{\left (a+b x+c x^2\right )^{5/2}}{19 c d (b d+2 c d x)^{19/2}}+\frac{5 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{17556 c^4 \left (b^2-4 a c\right )^{7/4} d^{21/2} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0846049, size = 109, normalized size = 0.36 $-\frac{\left (b^2-4 a c\right )^2 \sqrt{a+x (b+c x)} \, _2F_1\left (-\frac{19}{4},-\frac{5}{2};-\frac{15}{4};\frac{(b+2 c x)^2}{b^2-4 a c}\right )}{608 c^3 d^9 (b+2 c x)^8 \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}} (d (b+2 c x))^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a + b*x + c*x^2)^(5/2)/(b*d + 2*c*d*x)^(21/2),x]

[Out]

-((b^2 - 4*a*c)^2*Sqrt[a + x*(b + c*x)]*Hypergeometric2F1[-19/4, -5/2, -15/4, (b + 2*c*x)^2/(b^2 - 4*a*c)])/(6
08*c^3*d^9*(b + 2*c*x)^8*(d*(b + 2*c*x))^(3/2)*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)])

________________________________________________________________________________________

Maple [B]  time = 0.287, size = 1843, normalized size = 6. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^(21/2),x)

[Out]

1/35112*(c*x^2+b*x+a)^(1/2)*(d*(2*c*x+b))^(1/2)*(-29568*a^5*c^5+24904*x^5*b^5*c^5-190*x^2*b^8*c^2+25600*x^9*b*
c^9+1940*x^4*b^6*c^4-10*x*b^9*c+59672*x^6*b^4*c^6+74752*x^7*b^3*c^7-1616*x^3*b^7*c^3+57088*x^8*b^2*c^8+2048*x^
8*a*c^9-63104*x^6*a^2*c^8-138880*x^4*a^3*c^7-108416*x^2*a^4*c^6+9856*a^4*b^2*c^4-56*a^3*b^4*c^3-20*a^2*b^6*c^2
-10*a*b^8*c+2560*(-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*
c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b
^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x^9*c^9+5*(-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2
))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)
^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*b^9+720*(
-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2
)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c
+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x^2*b^7*c^2+90*(-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^
2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)
*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x*b^8*c+10080*(-4*a*c+
b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-
2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(
1/2))^(1/2)*2^(1/2),2^(1/2))*x^4*b^5*c^4+3360*(-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1
/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*Elli
pticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x^3*b^6*c^3+26880*(-4*a*c+b
^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2
*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1
/2))^(1/2)*2^(1/2),2^(1/2))*x^6*b^3*c^6+20160*(-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1
/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*Elli
pticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x^5*b^4*c^5+11520*(-4*a*c+b
^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2
*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1
/2))^(1/2)*2^(1/2),2^(1/2))*x^8*b*c^8+23040*(-4*a*c+b^2)^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2
))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*Ellipt
icF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x^7*b^2*c^7-189312*x^5*a^2*b*
c^7+108992*x^5*a*b^3*c^6-132480*x^4*a^2*b^2*c^6+101240*x^4*a*b^4*c^5-277760*x^3*a^3*b*c^6+50560*x^3*a^2*b^3*c^
5+30384*x^3*a*b^5*c^4-99904*x^2*a^3*b^2*c^5+56424*x^2*a^2*b^4*c^4-1808*x^2*a*b^6*c^3-108416*x*a^4*b*c^5+38976*
x*a^3*b^3*c^4-408*x*a^2*b^5*c^3-200*x*a*b^7*c^2+8192*x^7*a*b*c^8+45888*x^6*a*b^2*c^7+5120*x^10*c^10)/d^11/(2*c
^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)/(2*c*x+b)^9/(4*a*c-b^2)^2/c^4

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{2} + b x + a\right )}^{\frac{5}{2}}}{{\left (2 \, c d x + b d\right )}^{\frac{21}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^(21/2),x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^(5/2)/(2*c*d*x + b*d)^(21/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x +{\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}\right )} \sqrt{2 \, c d x + b d} \sqrt{c x^{2} + b x + a}}{2048 \, c^{11} d^{11} x^{11} + 11264 \, b c^{10} d^{11} x^{10} + 28160 \, b^{2} c^{9} d^{11} x^{9} + 42240 \, b^{3} c^{8} d^{11} x^{8} + 42240 \, b^{4} c^{7} d^{11} x^{7} + 29568 \, b^{5} c^{6} d^{11} x^{6} + 14784 \, b^{6} c^{5} d^{11} x^{5} + 5280 \, b^{7} c^{4} d^{11} x^{4} + 1320 \, b^{8} c^{3} d^{11} x^{3} + 220 \, b^{9} c^{2} d^{11} x^{2} + 22 \, b^{10} c d^{11} x + b^{11} d^{11}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^(21/2),x, algorithm="fricas")

[Out]

integral((c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2*a*c)*x^2 + a^2)*sqrt(2*c*d*x + b*d)*sqrt(c*x^2 + b*x + a)/(
2048*c^11*d^11*x^11 + 11264*b*c^10*d^11*x^10 + 28160*b^2*c^9*d^11*x^9 + 42240*b^3*c^8*d^11*x^8 + 42240*b^4*c^7
*d^11*x^7 + 29568*b^5*c^6*d^11*x^6 + 14784*b^6*c^5*d^11*x^5 + 5280*b^7*c^4*d^11*x^4 + 1320*b^8*c^3*d^11*x^3 +
220*b^9*c^2*d^11*x^2 + 22*b^10*c*d^11*x + b^11*d^11), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(5/2)/(2*c*d*x+b*d)**(21/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{2} + b x + a\right )}^{\frac{5}{2}}}{{\left (2 \, c d x + b d\right )}^{\frac{21}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^(21/2),x, algorithm="giac")

[Out]

integrate((c*x^2 + b*x + a)^(5/2)/(2*c*d*x + b*d)^(21/2), x)