3.1347 $$\int \frac{(a+b x+c x^2)^{3/2}}{(b d+2 c d x)^{7/2}} \, dx$$

Optimal. Leaf size=273 $-\frac{3 \left (b^2-4 a c\right )^{3/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right ),-1\right )}{10 c^3 d^{7/2} \sqrt{a+b x+c x^2}}+\frac{3 \left (b^2-4 a c\right )^{3/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{10 c^3 d^{7/2} \sqrt{a+b x+c x^2}}-\frac{3 \sqrt{a+b x+c x^2}}{10 c^2 d^3 \sqrt{b d+2 c d x}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{5 c d (b d+2 c d x)^{5/2}}$

[Out]

(-3*Sqrt[a + b*x + c*x^2])/(10*c^2*d^3*Sqrt[b*d + 2*c*d*x]) - (a + b*x + c*x^2)^(3/2)/(5*c*d*(b*d + 2*c*d*x)^(
5/2)) + (3*(b^2 - 4*a*c)^(3/4)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[b*d + 2*c*d*
x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(10*c^3*d^(7/2)*Sqrt[a + b*x + c*x^2]) - (3*(b^2 - 4*a*c)^(3/4)*Sqrt[-
((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1
])/(10*c^3*d^(7/2)*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.243723, antiderivative size = 273, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 28, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.25, Rules used = {684, 691, 690, 307, 221, 1199, 424} $-\frac{3 \left (b^2-4 a c\right )^{3/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{10 c^3 d^{7/2} \sqrt{a+b x+c x^2}}+\frac{3 \left (b^2-4 a c\right )^{3/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{10 c^3 d^{7/2} \sqrt{a+b x+c x^2}}-\frac{3 \sqrt{a+b x+c x^2}}{10 c^2 d^3 \sqrt{b d+2 c d x}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{5 c d (b d+2 c d x)^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a + b*x + c*x^2)^(3/2)/(b*d + 2*c*d*x)^(7/2),x]

[Out]

(-3*Sqrt[a + b*x + c*x^2])/(10*c^2*d^3*Sqrt[b*d + 2*c*d*x]) - (a + b*x + c*x^2)^(3/2)/(5*c*d*(b*d + 2*c*d*x)^(
5/2)) + (3*(b^2 - 4*a*c)^(3/4)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[b*d + 2*c*d*
x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(10*c^3*d^(7/2)*Sqrt[a + b*x + c*x^2]) - (3*(b^2 - 4*a*c)^(3/4)*Sqrt[-
((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1
])/(10*c^3*d^(7/2)*Sqrt[a + b*x + c*x^2])

Rule 684

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[(b*p)/(d*e*(m + 1)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1
), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] &&
GtQ[p, 0] && LtQ[m, -1] &&  !(IntegerQ[m/2] && LtQ[m + 2*p + 3, 0]) && IntegerQ[2*p]

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && EqQ[m^2, 1/4]

Rule 690

Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 - 4*a*
c))])/e, Subst[Int[x^2/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 307

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(b/a), 2]}, -Dist[q^(-1), Int[1/Sqrt[a + b*x^
4], x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 1199

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + (e*x^2)/d]/Sqrt
[1 - (e*x^2)/d], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{\left (a+b x+c x^2\right )^{3/2}}{(b d+2 c d x)^{7/2}} \, dx &=-\frac{\left (a+b x+c x^2\right )^{3/2}}{5 c d (b d+2 c d x)^{5/2}}+\frac{3 \int \frac{\sqrt{a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx}{10 c d^2}\\ &=-\frac{3 \sqrt{a+b x+c x^2}}{10 c^2 d^3 \sqrt{b d+2 c d x}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{5 c d (b d+2 c d x)^{5/2}}+\frac{3 \int \frac{\sqrt{b d+2 c d x}}{\sqrt{a+b x+c x^2}} \, dx}{20 c^2 d^4}\\ &=-\frac{3 \sqrt{a+b x+c x^2}}{10 c^2 d^3 \sqrt{b d+2 c d x}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{5 c d (b d+2 c d x)^{5/2}}+\frac{\left (3 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac{\sqrt{b d+2 c d x}}{\sqrt{-\frac{a c}{b^2-4 a c}-\frac{b c x}{b^2-4 a c}-\frac{c^2 x^2}{b^2-4 a c}}} \, dx}{20 c^2 d^4 \sqrt{a+b x+c x^2}}\\ &=-\frac{3 \sqrt{a+b x+c x^2}}{10 c^2 d^3 \sqrt{b d+2 c d x}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{5 c d (b d+2 c d x)^{5/2}}+\frac{\left (3 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{10 c^3 d^5 \sqrt{a+b x+c x^2}}\\ &=-\frac{3 \sqrt{a+b x+c x^2}}{10 c^2 d^3 \sqrt{b d+2 c d x}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{5 c d (b d+2 c d x)^{5/2}}-\frac{\left (3 \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{10 c^3 d^4 \sqrt{a+b x+c x^2}}+\frac{\left (3 \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1+\frac{x^2}{\sqrt{b^2-4 a c} d}}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{10 c^3 d^4 \sqrt{a+b x+c x^2}}\\ &=-\frac{3 \sqrt{a+b x+c x^2}}{10 c^2 d^3 \sqrt{b d+2 c d x}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{5 c d (b d+2 c d x)^{5/2}}-\frac{3 \left (b^2-4 a c\right )^{3/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{10 c^3 d^{7/2} \sqrt{a+b x+c x^2}}+\frac{\left (3 \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{x^2}{\sqrt{b^2-4 a c} d}}}{\sqrt{1-\frac{x^2}{\sqrt{b^2-4 a c} d}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{10 c^3 d^4 \sqrt{a+b x+c x^2}}\\ &=-\frac{3 \sqrt{a+b x+c x^2}}{10 c^2 d^3 \sqrt{b d+2 c d x}}-\frac{\left (a+b x+c x^2\right )^{3/2}}{5 c d (b d+2 c d x)^{5/2}}+\frac{3 \left (b^2-4 a c\right )^{3/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{10 c^3 d^{7/2} \sqrt{a+b x+c x^2}}-\frac{3 \left (b^2-4 a c\right )^{3/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{10 c^3 d^{7/2} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0603235, size = 99, normalized size = 0.36 $\frac{\left (b^2-4 a c\right ) \sqrt{a+x (b+c x)} \, _2F_1\left (-\frac{3}{2},-\frac{5}{4};-\frac{1}{4};\frac{(b+2 c x)^2}{b^2-4 a c}\right )}{40 c^2 d \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}} (d (b+2 c x))^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a + b*x + c*x^2)^(3/2)/(b*d + 2*c*d*x)^(7/2),x]

[Out]

((b^2 - 4*a*c)*Sqrt[a + x*(b + c*x)]*Hypergeometric2F1[-3/2, -5/4, -1/4, (b + 2*c*x)^2/(b^2 - 4*a*c)])/(40*c^2
*d*(d*(b + 2*c*x))^(5/2)*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)])

________________________________________________________________________________________

Maple [B]  time = 0.223, size = 893, normalized size = 3.3 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(3/2)/(2*c*d*x+b*d)^(7/2),x)

[Out]

1/20*(c*x^2+b*x+a)^(1/2)*(d*(2*c*x+b))^(1/2)*(48*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2
))^(1/2)*2^(1/2),2^(1/2))*x^2*a*c^3*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*
c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)-12*EllipticE(1/2*((b+2*c*x+(-4*a*
c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x^2*b^2*c^2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2
)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)+
48*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*x*a*b*c^2*((b+2*c*x+
(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1
/2))/(-4*a*c+b^2)^(1/2))^(1/2)-12*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2
),2^(1/2))*x*b^3*c*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/
2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)+12*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2
))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*Ellipt
icE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a*b^2*c-3*((b+2*c*x+(-4*a*c+b
^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*
a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*b
^4-28*c^4*x^4-56*b*c^3*x^3-32*x^2*a*c^3-34*x^2*b^2*c^2-32*b*a*c^2*x-6*b^3*c*x-4*a^2*c^2-6*a*c*b^2)/d^4/(2*c^2*
x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)/(2*c*x+b)^2/c^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}{{\left (2 \, c d x + b d\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(2*c*d*x+b*d)^(7/2),x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^(3/2)/(2*c*d*x + b*d)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{2 \, c d x + b d}{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}{16 \, c^{4} d^{4} x^{4} + 32 \, b c^{3} d^{4} x^{3} + 24 \, b^{2} c^{2} d^{4} x^{2} + 8 \, b^{3} c d^{4} x + b^{4} d^{4}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(2*c*d*x+b*d)^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)/(16*c^4*d^4*x^4 + 32*b*c^3*d^4*x^3 + 24*b^2*c^2*d^4*x^2 +
8*b^3*c*d^4*x + b^4*d^4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x + c x^{2}\right )^{\frac{3}{2}}}{\left (d \left (b + 2 c x\right )\right )^{\frac{7}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(3/2)/(2*c*d*x+b*d)**(7/2),x)

[Out]

Integral((a + b*x + c*x**2)**(3/2)/(d*(b + 2*c*x))**(7/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}{{\left (2 \, c d x + b d\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(2*c*d*x+b*d)^(7/2),x, algorithm="giac")

[Out]

integrate((c*x^2 + b*x + a)^(3/2)/(2*c*d*x + b*d)^(7/2), x)