### 3.1316 $$\int \frac{1}{\sqrt{b d+2 c d x} (a+b x+c x^2)^3} \, dx$$

Optimal. Leaf size=192 $-\frac{21 c^2 \tan ^{-1}\left (\frac{\sqrt{d (b+2 c x)}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right )}{\sqrt{d} \left (b^2-4 a c\right )^{11/4}}-\frac{21 c^2 \tanh ^{-1}\left (\frac{\sqrt{d (b+2 c x)}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right )}{\sqrt{d} \left (b^2-4 a c\right )^{11/4}}+\frac{7 c \sqrt{b d+2 c d x}}{2 d \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}-\frac{\sqrt{b d+2 c d x}}{2 d \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}$

[Out]

-Sqrt[b*d + 2*c*d*x]/(2*(b^2 - 4*a*c)*d*(a + b*x + c*x^2)^2) + (7*c*Sqrt[b*d + 2*c*d*x])/(2*(b^2 - 4*a*c)^2*d*
(a + b*x + c*x^2)) - (21*c^2*ArcTan[Sqrt[d*(b + 2*c*x)]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])])/((b^2 - 4*a*c)^(11/4)*
Sqrt[d]) - (21*c^2*ArcTanh[Sqrt[d*(b + 2*c*x)]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])])/((b^2 - 4*a*c)^(11/4)*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.135095, antiderivative size = 192, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 26, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.231, Rules used = {687, 694, 329, 212, 206, 203} $-\frac{21 c^2 \tan ^{-1}\left (\frac{\sqrt{d (b+2 c x)}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right )}{\sqrt{d} \left (b^2-4 a c\right )^{11/4}}-\frac{21 c^2 \tanh ^{-1}\left (\frac{\sqrt{d (b+2 c x)}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right )}{\sqrt{d} \left (b^2-4 a c\right )^{11/4}}+\frac{7 c \sqrt{b d+2 c d x}}{2 d \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}-\frac{\sqrt{b d+2 c d x}}{2 d \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)^3),x]

[Out]

-Sqrt[b*d + 2*c*d*x]/(2*(b^2 - 4*a*c)*d*(a + b*x + c*x^2)^2) + (7*c*Sqrt[b*d + 2*c*d*x])/(2*(b^2 - 4*a*c)^2*d*
(a + b*x + c*x^2)) - (21*c^2*ArcTan[Sqrt[d*(b + 2*c*x)]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])])/((b^2 - 4*a*c)^(11/4)*
Sqrt[d]) - (21*c^2*ArcTanh[Sqrt[d*(b + 2*c*x)]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])])/((b^2 - 4*a*c)^(11/4)*Sqrt[d])

Rule 687

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*c*(d + e*x)^(m +
1)*(a + b*x + c*x^2)^(p + 1))/(e*(p + 1)*(b^2 - 4*a*c)), x] - Dist[(2*c*e*(m + 2*p + 3))/(e*(p + 1)*(b^2 - 4*a
*c)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0]
&& EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[p, -1] &&  !GtQ[m, 1] && RationalQ[m] && IntegerQ[2*p]

Rule 694

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[x^m*(
a - b^2/(4*c) + (c*x^2)/e^2)^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0]
&& EqQ[2*c*d - b*e, 0]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
&& FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
!GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{b d+2 c d x} \left (a+b x+c x^2\right )^3} \, dx &=-\frac{\sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right ) d \left (a+b x+c x^2\right )^2}-\frac{(7 c) \int \frac{1}{\sqrt{b d+2 c d x} \left (a+b x+c x^2\right )^2} \, dx}{2 \left (b^2-4 a c\right )}\\ &=-\frac{\sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right ) d \left (a+b x+c x^2\right )^2}+\frac{7 c \sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right )^2 d \left (a+b x+c x^2\right )}+\frac{\left (21 c^2\right ) \int \frac{1}{\sqrt{b d+2 c d x} \left (a+b x+c x^2\right )} \, dx}{2 \left (b^2-4 a c\right )^2}\\ &=-\frac{\sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right ) d \left (a+b x+c x^2\right )^2}+\frac{7 c \sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right )^2 d \left (a+b x+c x^2\right )}+\frac{(21 c) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (a-\frac{b^2}{4 c}+\frac{x^2}{4 c d^2}\right )} \, dx,x,b d+2 c d x\right )}{4 \left (b^2-4 a c\right )^2 d}\\ &=-\frac{\sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right ) d \left (a+b x+c x^2\right )^2}+\frac{7 c \sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right )^2 d \left (a+b x+c x^2\right )}+\frac{(21 c) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b^2}{4 c}+\frac{x^4}{4 c d^2}} \, dx,x,\sqrt{d (b+2 c x)}\right )}{2 \left (b^2-4 a c\right )^2 d}\\ &=-\frac{\sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right ) d \left (a+b x+c x^2\right )^2}+\frac{7 c \sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right )^2 d \left (a+b x+c x^2\right )}-\frac{\left (21 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b^2-4 a c} d-x^2} \, dx,x,\sqrt{d (b+2 c x)}\right )}{\left (b^2-4 a c\right )^{5/2}}-\frac{\left (21 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b^2-4 a c} d+x^2} \, dx,x,\sqrt{d (b+2 c x)}\right )}{\left (b^2-4 a c\right )^{5/2}}\\ &=-\frac{\sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right ) d \left (a+b x+c x^2\right )^2}+\frac{7 c \sqrt{b d+2 c d x}}{2 \left (b^2-4 a c\right )^2 d \left (a+b x+c x^2\right )}-\frac{21 c^2 \tan ^{-1}\left (\frac{\sqrt{d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )}{\left (b^2-4 a c\right )^{11/4} \sqrt{d}}-\frac{21 c^2 \tanh ^{-1}\left (\frac{\sqrt{d (b+2 c x)}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )}{\left (b^2-4 a c\right )^{11/4} \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.379637, size = 179, normalized size = 0.93 $\frac{c^2 \left (\frac{\left (b^2-4 a c\right ) (b+2 c x) \left (-c \left (11 a+7 c x^2\right )+b^2-7 b c x\right )}{2 c^2 (a+x (b+c x))^2}+21 \sqrt [4]{b^2-4 a c} \sqrt{b+2 c x} \tan ^{-1}\left (\frac{\sqrt{b+2 c x}}{\sqrt [4]{b^2-4 a c}}\right )+21 \sqrt [4]{b^2-4 a c} \sqrt{b+2 c x} \tanh ^{-1}\left (\frac{\sqrt{b+2 c x}}{\sqrt [4]{b^2-4 a c}}\right )\right )}{\left (4 a c-b^2\right )^3 \sqrt{d (b+2 c x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)^3),x]

[Out]

(c^2*(((b^2 - 4*a*c)*(b + 2*c*x)*(b^2 - 7*b*c*x - c*(11*a + 7*c*x^2)))/(2*c^2*(a + x*(b + c*x))^2) + 21*(b^2 -
4*a*c)^(1/4)*Sqrt[b + 2*c*x]*ArcTan[Sqrt[b + 2*c*x]/(b^2 - 4*a*c)^(1/4)] + 21*(b^2 - 4*a*c)^(1/4)*Sqrt[b + 2*
c*x]*ArcTanh[Sqrt[b + 2*c*x]/(b^2 - 4*a*c)^(1/4)]))/((-b^2 + 4*a*c)^3*Sqrt[d*(b + 2*c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.197, size = 419, normalized size = 2.2 \begin{align*} 8\,{\frac{{c}^{2}{d}^{5}\sqrt{2\,cdx+bd}}{ \left ( 4\,ac{d}^{2}-{b}^{2}{d}^{2} \right ) \left ( 4\,{c}^{2}{d}^{2}{x}^{2}+4\,bc{d}^{2}x+4\,ac{d}^{2} \right ) ^{2}}}+14\,{\frac{{c}^{2}{d}^{5}\sqrt{2\,cdx+bd}}{ \left ( 4\,ac{d}^{2}-{b}^{2}{d}^{2} \right ) ^{2} \left ( 4\,{c}^{2}{d}^{2}{x}^{2}+4\,bc{d}^{2}x+4\,ac{d}^{2} \right ) }}+{\frac{21\,{c}^{2}{d}^{5}\sqrt{2}}{4}\ln \left ({ \left ( 2\,cdx+bd+\sqrt [4]{4\,ac{d}^{2}-{b}^{2}{d}^{2}}\sqrt{2\,cdx+bd}\sqrt{2}+\sqrt{4\,ac{d}^{2}-{b}^{2}{d}^{2}} \right ) \left ( 2\,cdx+bd-\sqrt [4]{4\,ac{d}^{2}-{b}^{2}{d}^{2}}\sqrt{2\,cdx+bd}\sqrt{2}+\sqrt{4\,ac{d}^{2}-{b}^{2}{d}^{2}} \right ) ^{-1}} \right ) \left ( 4\,ac{d}^{2}-{b}^{2}{d}^{2} \right ) ^{-{\frac{11}{4}}}}+{\frac{21\,{c}^{2}{d}^{5}\sqrt{2}}{2}\arctan \left ({\sqrt{2}\sqrt{2\,cdx+bd}{\frac{1}{\sqrt [4]{4\,ac{d}^{2}-{b}^{2}{d}^{2}}}}}+1 \right ) \left ( 4\,ac{d}^{2}-{b}^{2}{d}^{2} \right ) ^{-{\frac{11}{4}}}}-{\frac{21\,{c}^{2}{d}^{5}\sqrt{2}}{2}\arctan \left ( -{\sqrt{2}\sqrt{2\,cdx+bd}{\frac{1}{\sqrt [4]{4\,ac{d}^{2}-{b}^{2}{d}^{2}}}}}+1 \right ) \left ( 4\,ac{d}^{2}-{b}^{2}{d}^{2} \right ) ^{-{\frac{11}{4}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^3,x)

[Out]

8*c^2*d^5*(2*c*d*x+b*d)^(1/2)/(4*a*c*d^2-b^2*d^2)/(4*c^2*d^2*x^2+4*b*c*d^2*x+4*a*c*d^2)^2+14*c^2*d^5/(4*a*c*d^
2-b^2*d^2)^2*(2*c*d*x+b*d)^(1/2)/(4*c^2*d^2*x^2+4*b*c*d^2*x+4*a*c*d^2)+21/4*c^2*d^5/(4*a*c*d^2-b^2*d^2)^(11/4)
*2^(1/2)*ln((2*c*d*x+b*d+(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)*2^(1/2)+(4*a*c*d^2-b^2*d^2)^(1/2))/(2*c
*d*x+b*d-(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)*2^(1/2)+(4*a*c*d^2-b^2*d^2)^(1/2)))+21/2*c^2*d^5/(4*a*c
*d^2-b^2*d^2)^(11/4)*2^(1/2)*arctan(2^(1/2)/(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)+1)-21/2*c^2*d^5/(4*a
*c*d^2-b^2*d^2)^(11/4)*2^(1/2)*arctan(-2^(1/2)/(4*a*c*d^2-b^2*d^2)^(1/4)*(2*c*d*x+b*d)^(1/2)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.02501, size = 4983, normalized size = 25.95 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^3,x, algorithm="fricas")

[Out]

1/2*(84*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*x^4 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d*x^3 + (b^6 - 6*
a*b^4*c + 32*a^3*c^3)*d*x^2 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d*x + (a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2
)*d)*(c^8/((b^22 - 44*a*b^20*c + 880*a^2*b^18*c^2 - 10560*a^3*b^16*c^3 + 84480*a^4*b^14*c^4 - 473088*a^5*b^12*
c^5 + 1892352*a^6*b^10*c^6 - 5406720*a^7*b^8*c^7 + 10813440*a^8*b^6*c^8 - 14417920*a^9*b^4*c^9 + 11534336*a^10
*b^2*c^10 - 4194304*a^11*c^11)*d^2))^(1/4)*arctan(((b^16 - 32*a*b^14*c + 448*a^2*b^12*c^2 - 3584*a^3*b^10*c^3
+ 17920*a^4*b^8*c^4 - 57344*a^5*b^6*c^5 + 114688*a^6*b^4*c^6 - 131072*a^7*b^2*c^7 + 65536*a^8*c^8)*sqrt(2*c^5*
d*x + b*c^4*d + (b^12 - 24*a*b^10*c + 240*a^2*b^8*c^2 - 1280*a^3*b^6*c^3 + 3840*a^4*b^4*c^4 - 6144*a^5*b^2*c^5
+ 4096*a^6*c^6)*sqrt(c^8/((b^22 - 44*a*b^20*c + 880*a^2*b^18*c^2 - 10560*a^3*b^16*c^3 + 84480*a^4*b^14*c^4 -
473088*a^5*b^12*c^5 + 1892352*a^6*b^10*c^6 - 5406720*a^7*b^8*c^7 + 10813440*a^8*b^6*c^8 - 14417920*a^9*b^4*c^9
+ 11534336*a^10*b^2*c^10 - 4194304*a^11*c^11)*d^2))*d^2)*(c^8/((b^22 - 44*a*b^20*c + 880*a^2*b^18*c^2 - 10560
*a^3*b^16*c^3 + 84480*a^4*b^14*c^4 - 473088*a^5*b^12*c^5 + 1892352*a^6*b^10*c^6 - 5406720*a^7*b^8*c^7 + 108134
40*a^8*b^6*c^8 - 14417920*a^9*b^4*c^9 + 11534336*a^10*b^2*c^10 - 4194304*a^11*c^11)*d^2))^(3/4)*d - (b^16*c^2
- 32*a*b^14*c^3 + 448*a^2*b^12*c^4 - 3584*a^3*b^10*c^5 + 17920*a^4*b^8*c^6 - 57344*a^5*b^6*c^7 + 114688*a^6*b^
4*c^8 - 131072*a^7*b^2*c^9 + 65536*a^8*c^10)*(c^8/((b^22 - 44*a*b^20*c + 880*a^2*b^18*c^2 - 10560*a^3*b^16*c^3
+ 84480*a^4*b^14*c^4 - 473088*a^5*b^12*c^5 + 1892352*a^6*b^10*c^6 - 5406720*a^7*b^8*c^7 + 10813440*a^8*b^6*c^
8 - 14417920*a^9*b^4*c^9 + 11534336*a^10*b^2*c^10 - 4194304*a^11*c^11)*d^2))^(3/4)*sqrt(2*c*d*x + b*d)*d)/c^8)
- 21*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*x^4 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d*x^3 + (b^6 - 6*a*
b^4*c + 32*a^3*c^3)*d*x^2 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d*x + (a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2)*
d)*(c^8/((b^22 - 44*a*b^20*c + 880*a^2*b^18*c^2 - 10560*a^3*b^16*c^3 + 84480*a^4*b^14*c^4 - 473088*a^5*b^12*c^
5 + 1892352*a^6*b^10*c^6 - 5406720*a^7*b^8*c^7 + 10813440*a^8*b^6*c^8 - 14417920*a^9*b^4*c^9 + 11534336*a^10*b
^2*c^10 - 4194304*a^11*c^11)*d^2))^(1/4)*log(21*sqrt(2*c*d*x + b*d)*c^2 + 21*(b^6 - 12*a*b^4*c + 48*a^2*b^2*c^
2 - 64*a^3*c^3)*(c^8/((b^22 - 44*a*b^20*c + 880*a^2*b^18*c^2 - 10560*a^3*b^16*c^3 + 84480*a^4*b^14*c^4 - 47308
8*a^5*b^12*c^5 + 1892352*a^6*b^10*c^6 - 5406720*a^7*b^8*c^7 + 10813440*a^8*b^6*c^8 - 14417920*a^9*b^4*c^9 + 11
534336*a^10*b^2*c^10 - 4194304*a^11*c^11)*d^2))^(1/4)*d) + 21*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*x^4 + 2*
(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d*x^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d*x^2 + 2*(a*b^5 - 8*a^2*b^3*c + 1
6*a^3*b*c^2)*d*x + (a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2)*d)*(c^8/((b^22 - 44*a*b^20*c + 880*a^2*b^18*c^2 - 1056
0*a^3*b^16*c^3 + 84480*a^4*b^14*c^4 - 473088*a^5*b^12*c^5 + 1892352*a^6*b^10*c^6 - 5406720*a^7*b^8*c^7 + 10813
440*a^8*b^6*c^8 - 14417920*a^9*b^4*c^9 + 11534336*a^10*b^2*c^10 - 4194304*a^11*c^11)*d^2))^(1/4)*log(21*sqrt(2
*c*d*x + b*d)*c^2 - 21*(b^6 - 12*a*b^4*c + 48*a^2*b^2*c^2 - 64*a^3*c^3)*(c^8/((b^22 - 44*a*b^20*c + 880*a^2*b^
18*c^2 - 10560*a^3*b^16*c^3 + 84480*a^4*b^14*c^4 - 473088*a^5*b^12*c^5 + 1892352*a^6*b^10*c^6 - 5406720*a^7*b^
8*c^7 + 10813440*a^8*b^6*c^8 - 14417920*a^9*b^4*c^9 + 11534336*a^10*b^2*c^10 - 4194304*a^11*c^11)*d^2))^(1/4)*
d) + (7*c^2*x^2 + 7*b*c*x - b^2 + 11*a*c)*sqrt(2*c*d*x + b*d))/((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*x^4 + 2
*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d*x^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d*x^2 + 2*(a*b^5 - 8*a^2*b^3*c +
16*a^3*b*c^2)*d*x + (a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2)*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)**(1/2)/(c*x**2+b*x+a)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.19312, size = 871, normalized size = 4.54 \begin{align*} -\frac{21 \,{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}} c^{2} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2}{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}} + 2 \, \sqrt{2 \, c d x + b d}\right )}}{2 \,{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}}}\right )}{\sqrt{2} b^{6} d - 12 \, \sqrt{2} a b^{4} c d + 48 \, \sqrt{2} a^{2} b^{2} c^{2} d - 64 \, \sqrt{2} a^{3} c^{3} d} - \frac{21 \,{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}} c^{2} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2}{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}} - 2 \, \sqrt{2 \, c d x + b d}\right )}}{2 \,{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}}}\right )}{\sqrt{2} b^{6} d - 12 \, \sqrt{2} a b^{4} c d + 48 \, \sqrt{2} a^{2} b^{2} c^{2} d - 64 \, \sqrt{2} a^{3} c^{3} d} - \frac{21 \,{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}} c^{2} \log \left (2 \, c d x + b d + \sqrt{2}{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}} \sqrt{2 \, c d x + b d} + \sqrt{-b^{2} d^{2} + 4 \, a c d^{2}}\right )}{2 \,{\left (\sqrt{2} b^{6} d - 12 \, \sqrt{2} a b^{4} c d + 48 \, \sqrt{2} a^{2} b^{2} c^{2} d - 64 \, \sqrt{2} a^{3} c^{3} d\right )}} + \frac{21 \,{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}} c^{2} \log \left (2 \, c d x + b d - \sqrt{2}{\left (-b^{2} d^{2} + 4 \, a c d^{2}\right )}^{\frac{1}{4}} \sqrt{2 \, c d x + b d} + \sqrt{-b^{2} d^{2} + 4 \, a c d^{2}}\right )}{2 \,{\left (\sqrt{2} b^{6} d - 12 \, \sqrt{2} a b^{4} c d + 48 \, \sqrt{2} a^{2} b^{2} c^{2} d - 64 \, \sqrt{2} a^{3} c^{3} d\right )}} - \frac{2 \,{\left (11 \, \sqrt{2 \, c d x + b d} b^{2} c^{2} d^{3} - 44 \, \sqrt{2 \, c d x + b d} a c^{3} d^{3} - 7 \,{\left (2 \, c d x + b d\right )}^{\frac{5}{2}} c^{2} d\right )}}{{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )}{\left (b^{2} d^{2} - 4 \, a c d^{2} -{\left (2 \, c d x + b d\right )}^{2}\right )}^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^3,x, algorithm="giac")

[Out]

-21*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*c^2*arctan(1/2*sqrt(2)*(sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4) + 2*sqrt(2*c*d*x
+ b*d))/(-b^2*d^2 + 4*a*c*d^2)^(1/4))/(sqrt(2)*b^6*d - 12*sqrt(2)*a*b^4*c*d + 48*sqrt(2)*a^2*b^2*c^2*d - 64*s
qrt(2)*a^3*c^3*d) - 21*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*c^2*arctan(-1/2*sqrt(2)*(sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1
/4) - 2*sqrt(2*c*d*x + b*d))/(-b^2*d^2 + 4*a*c*d^2)^(1/4))/(sqrt(2)*b^6*d - 12*sqrt(2)*a*b^4*c*d + 48*sqrt(2)*
a^2*b^2*c^2*d - 64*sqrt(2)*a^3*c^3*d) - 21/2*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*c^2*log(2*c*d*x + b*d + sqrt(2)*(-b^
2*d^2 + 4*a*c*d^2)^(1/4)*sqrt(2*c*d*x + b*d) + sqrt(-b^2*d^2 + 4*a*c*d^2))/(sqrt(2)*b^6*d - 12*sqrt(2)*a*b^4*c
*d + 48*sqrt(2)*a^2*b^2*c^2*d - 64*sqrt(2)*a^3*c^3*d) + 21/2*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*c^2*log(2*c*d*x + b*
d - sqrt(2)*(-b^2*d^2 + 4*a*c*d^2)^(1/4)*sqrt(2*c*d*x + b*d) + sqrt(-b^2*d^2 + 4*a*c*d^2))/(sqrt(2)*b^6*d - 12
*sqrt(2)*a*b^4*c*d + 48*sqrt(2)*a^2*b^2*c^2*d - 64*sqrt(2)*a^3*c^3*d) - 2*(11*sqrt(2*c*d*x + b*d)*b^2*c^2*d^3
- 44*sqrt(2*c*d*x + b*d)*a*c^3*d^3 - 7*(2*c*d*x + b*d)^(5/2)*c^2*d)/((b^4 - 8*a*b^2*c + 16*a^2*c^2)*(b^2*d^2 -
4*a*c*d^2 - (2*c*d*x + b*d)^2)^2)