### 3.131 $$\int (d x)^{5/2} (b x+c x^2)^p \, dx$$

Optimal. Leaf size=61 $\frac{2 x (d x)^{5/2} \left (\frac{c x}{b}+1\right )^{-p} \left (b x+c x^2\right )^p \, _2F_1\left (-p,p+\frac{7}{2};p+\frac{9}{2};-\frac{c x}{b}\right )}{2 p+7}$

[Out]

(2*x*(d*x)^(5/2)*(b*x + c*x^2)^p*Hypergeometric2F1[-p, 7/2 + p, 9/2 + p, -((c*x)/b)])/((7 + 2*p)*(1 + (c*x)/b)
^p)

________________________________________________________________________________________

Rubi [A]  time = 0.0246532, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.158, Rules used = {674, 66, 64} $\frac{2 x (d x)^{5/2} \left (\frac{c x}{b}+1\right )^{-p} \left (b x+c x^2\right )^p \, _2F_1\left (-p,p+\frac{7}{2};p+\frac{9}{2};-\frac{c x}{b}\right )}{2 p+7}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d*x)^(5/2)*(b*x + c*x^2)^p,x]

[Out]

(2*x*(d*x)^(5/2)*(b*x + c*x^2)^p*Hypergeometric2F1[-p, 7/2 + p, 9/2 + p, -((c*x)/b)])/((7 + 2*p)*(1 + (c*x)/b)
^p)

Rule 674

Int[((e_.)*(x_))^(m_)*((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((e*x)^m*(b*x + c*x^2)^p)/(x^(m + p)
*(b + c*x)^p), Int[x^(m + p)*(b + c*x)^p, x], x] /; FreeQ[{b, c, e, m}, x] &&  !IntegerQ[p]

Rule 66

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c^IntPart[n]*(c + d*x)^FracPart[n])/(1 + (d
*x)/c)^FracPart[n], Int[(b*x)^m*(1 + (d*x)/c)^n, x], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] &&  !GtQ[c, 0] &&  !GtQ[-(d/(b*c)), 0] && ((RationalQ[m] &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0]))
||  !RationalQ[n])

Rule 64

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(c^n*(b*x)^(m + 1)*Hypergeometric2F1[-n, m +
1, m + 2, -((d*x)/c)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] && (IntegerQ[n] || (GtQ[
c, 0] &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0] && GtQ[-(d/(b*c)), 0])))

Rubi steps

\begin{align*} \int (d x)^{5/2} \left (b x+c x^2\right )^p \, dx &=\left (x^{-\frac{5}{2}-p} (d x)^{5/2} (b+c x)^{-p} \left (b x+c x^2\right )^p\right ) \int x^{\frac{5}{2}+p} (b+c x)^p \, dx\\ &=\left (x^{-\frac{5}{2}-p} (d x)^{5/2} \left (1+\frac{c x}{b}\right )^{-p} \left (b x+c x^2\right )^p\right ) \int x^{\frac{5}{2}+p} \left (1+\frac{c x}{b}\right )^p \, dx\\ &=\frac{2 x (d x)^{5/2} \left (1+\frac{c x}{b}\right )^{-p} \left (b x+c x^2\right )^p \, _2F_1\left (-p,\frac{7}{2}+p;\frac{9}{2}+p;-\frac{c x}{b}\right )}{7+2 p}\\ \end{align*}

Mathematica [A]  time = 0.0135288, size = 58, normalized size = 0.95 $\frac{x (d x)^{5/2} (x (b+c x))^p \left (\frac{c x}{b}+1\right )^{-p} \, _2F_1\left (-p,p+\frac{7}{2};p+\frac{9}{2};-\frac{c x}{b}\right )}{p+\frac{7}{2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d*x)^(5/2)*(b*x + c*x^2)^p,x]

[Out]

(x*(d*x)^(5/2)*(x*(b + c*x))^p*Hypergeometric2F1[-p, 7/2 + p, 9/2 + p, -((c*x)/b)])/((7/2 + p)*(1 + (c*x)/b)^p
)

________________________________________________________________________________________

Maple [F]  time = 0.362, size = 0, normalized size = 0. \begin{align*} \int \left ( dx \right ) ^{{\frac{5}{2}}} \left ( c{x}^{2}+bx \right ) ^{p}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(5/2)*(c*x^2+b*x)^p,x)

[Out]

int((d*x)^(5/2)*(c*x^2+b*x)^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d x\right )^{\frac{5}{2}}{\left (c x^{2} + b x\right )}^{p}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(5/2)*(c*x^2+b*x)^p,x, algorithm="maxima")

[Out]

integrate((d*x)^(5/2)*(c*x^2 + b*x)^p, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{d x}{\left (c x^{2} + b x\right )}^{p} d^{2} x^{2}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(5/2)*(c*x^2+b*x)^p,x, algorithm="fricas")

[Out]

integral(sqrt(d*x)*(c*x^2 + b*x)^p*d^2*x^2, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**(5/2)*(c*x**2+b*x)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d x\right )^{\frac{5}{2}}{\left (c x^{2} + b x\right )}^{p}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(5/2)*(c*x^2+b*x)^p,x, algorithm="giac")

[Out]

integrate((d*x)^(5/2)*(c*x^2 + b*x)^p, x)