### 3.130 $$\int \frac{(b x+c x^2)^p}{x^3} \, dx$$

Optimal. Leaf size=52 $-\frac{\left (\frac{c x}{b}+1\right )^{-p} \left (b x+c x^2\right )^p \, _2F_1\left (p-2,-p;p-1;-\frac{c x}{b}\right )}{(2-p) x^2}$

[Out]

-(((b*x + c*x^2)^p*Hypergeometric2F1[-2 + p, -p, -1 + p, -((c*x)/b)])/((2 - p)*x^2*(1 + (c*x)/b)^p))

________________________________________________________________________________________

Rubi [A]  time = 0.0223019, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 15, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.2, Rules used = {674, 66, 64} $-\frac{\left (\frac{c x}{b}+1\right )^{-p} \left (b x+c x^2\right )^p \, _2F_1\left (p-2,-p;p-1;-\frac{c x}{b}\right )}{(2-p) x^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(b*x + c*x^2)^p/x^3,x]

[Out]

-(((b*x + c*x^2)^p*Hypergeometric2F1[-2 + p, -p, -1 + p, -((c*x)/b)])/((2 - p)*x^2*(1 + (c*x)/b)^p))

Rule 674

Int[((e_.)*(x_))^(m_)*((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((e*x)^m*(b*x + c*x^2)^p)/(x^(m + p)
*(b + c*x)^p), Int[x^(m + p)*(b + c*x)^p, x], x] /; FreeQ[{b, c, e, m}, x] &&  !IntegerQ[p]

Rule 66

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c^IntPart[n]*(c + d*x)^FracPart[n])/(1 + (d
*x)/c)^FracPart[n], Int[(b*x)^m*(1 + (d*x)/c)^n, x], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] &&  !GtQ[c, 0] &&  !GtQ[-(d/(b*c)), 0] && ((RationalQ[m] &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0]))
||  !RationalQ[n])

Rule 64

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(c^n*(b*x)^(m + 1)*Hypergeometric2F1[-n, m +
1, m + 2, -((d*x)/c)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] && (IntegerQ[n] || (GtQ[
c, 0] &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0] && GtQ[-(d/(b*c)), 0])))

Rubi steps

\begin{align*} \int \frac{\left (b x+c x^2\right )^p}{x^3} \, dx &=\left (x^{-p} (b+c x)^{-p} \left (b x+c x^2\right )^p\right ) \int x^{-3+p} (b+c x)^p \, dx\\ &=\left (x^{-p} \left (1+\frac{c x}{b}\right )^{-p} \left (b x+c x^2\right )^p\right ) \int x^{-3+p} \left (1+\frac{c x}{b}\right )^p \, dx\\ &=-\frac{\left (1+\frac{c x}{b}\right )^{-p} \left (b x+c x^2\right )^p \, _2F_1\left (-2+p,-p;-1+p;-\frac{c x}{b}\right )}{(2-p) x^2}\\ \end{align*}

Mathematica [A]  time = 0.0081432, size = 47, normalized size = 0.9 $\frac{(x (b+c x))^p \left (\frac{c x}{b}+1\right )^{-p} \, _2F_1\left (p-2,-p;p-1;-\frac{c x}{b}\right )}{(p-2) x^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(b*x + c*x^2)^p/x^3,x]

[Out]

((x*(b + c*x))^p*Hypergeometric2F1[-2 + p, -p, -1 + p, -((c*x)/b)])/((-2 + p)*x^2*(1 + (c*x)/b)^p)

________________________________________________________________________________________

Maple [F]  time = 0.369, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( c{x}^{2}+bx \right ) ^{p}}{{x}^{3}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^p/x^3,x)

[Out]

int((c*x^2+b*x)^p/x^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{2} + b x\right )}^{p}}{x^{3}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^p/x^3,x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x)^p/x^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (c x^{2} + b x\right )}^{p}}{x^{3}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^p/x^3,x, algorithm="fricas")

[Out]

integral((c*x^2 + b*x)^p/x^3, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (x \left (b + c x\right )\right )^{p}}{x^{3}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**p/x**3,x)

[Out]

Integral((x*(b + c*x))**p/x**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c x^{2} + b x\right )}^{p}}{x^{3}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^p/x^3,x, algorithm="giac")

[Out]

integrate((c*x^2 + b*x)^p/x^3, x)