### 3.1238 $$\int \frac{1}{(b d+2 c d x) \sqrt{a+b x+c x^2}} \, dx$$

Optimal. Leaf size=55 $\frac{\tan ^{-1}\left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right )}{\sqrt{c} d \sqrt{b^2-4 a c}}$

[Out]

ArcTan[(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c]]/(Sqrt[c]*Sqrt[b^2 - 4*a*c]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0333378, antiderivative size = 55, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 26, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.077, Rules used = {688, 205} $\frac{\tan ^{-1}\left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right )}{\sqrt{c} d \sqrt{b^2-4 a c}}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((b*d + 2*c*d*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

ArcTan[(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])/Sqrt[b^2 - 4*a*c]]/(Sqrt[c]*Sqrt[b^2 - 4*a*c]*d)

Rule 688

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[4*c, Subst[Int[1/(b^2*e
- 4*a*c*e + 4*c*e*x^2), x], x, Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0]
&& EqQ[2*c*d - b*e, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(b d+2 c d x) \sqrt{a+b x+c x^2}} \, dx &=(4 c) \operatorname{Subst}\left (\int \frac{1}{2 b^2 c d-8 a c^2 d+8 c^2 d x^2} \, dx,x,\sqrt{a+b x+c x^2}\right )\\ &=\frac{\tan ^{-1}\left (\frac{2 \sqrt{c} \sqrt{a+b x+c x^2}}{\sqrt{b^2-4 a c}}\right )}{\sqrt{c} \sqrt{b^2-4 a c} d}\\ \end{align*}

Mathematica [A]  time = 0.0339335, size = 54, normalized size = 0.98 $\frac{\tan ^{-1}\left (\frac{2 \sqrt{c} \sqrt{a+x (b+c x)}}{\sqrt{b^2-4 a c}}\right )}{\sqrt{c} d \sqrt{b^2-4 a c}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((b*d + 2*c*d*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

ArcTan[(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])/Sqrt[b^2 - 4*a*c]]/(Sqrt[c]*Sqrt[b^2 - 4*a*c]*d)

________________________________________________________________________________________

Maple [B]  time = 0.192, size = 101, normalized size = 1.8 \begin{align*} -{\frac{1}{cd}\ln \left ({ \left ({\frac{4\,ac-{b}^{2}}{2\,c}}+{\frac{1}{2}\sqrt{{\frac{4\,ac-{b}^{2}}{c}}}\sqrt{4\, \left ( x+1/2\,{\frac{b}{c}} \right ) ^{2}c+{\frac{4\,ac-{b}^{2}}{c}}}} \right ) \left ( x+{\frac{b}{2\,c}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{4\,ac-{b}^{2}}{c}}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*c*d*x+b*d)/(c*x^2+b*x+a)^(1/2),x)

[Out]

-1/d/c/((4*a*c-b^2)/c)^(1/2)*ln((1/2*(4*a*c-b^2)/c+1/2*((4*a*c-b^2)/c)^(1/2)*(4*(x+1/2*b/c)^2*c+(4*a*c-b^2)/c)
^(1/2))/(x+1/2*b/c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.85191, size = 381, normalized size = 6.93 \begin{align*} \left [-\frac{\sqrt{-b^{2} c + 4 \, a c^{2}} \log \left (-\frac{4 \, c^{2} x^{2} + 4 \, b c x - b^{2} + 8 \, a c - 4 \, \sqrt{-b^{2} c + 4 \, a c^{2}} \sqrt{c x^{2} + b x + a}}{4 \, c^{2} x^{2} + 4 \, b c x + b^{2}}\right )}{2 \,{\left (b^{2} c - 4 \, a c^{2}\right )} d}, -\frac{\arctan \left (\frac{\sqrt{b^{2} c - 4 \, a c^{2}} \sqrt{c x^{2} + b x + a}}{2 \,{\left (c^{2} x^{2} + b c x + a c\right )}}\right )}{\sqrt{b^{2} c - 4 \, a c^{2}} d}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*sqrt(-b^2*c + 4*a*c^2)*log(-(4*c^2*x^2 + 4*b*c*x - b^2 + 8*a*c - 4*sqrt(-b^2*c + 4*a*c^2)*sqrt(c*x^2 + b
*x + a))/(4*c^2*x^2 + 4*b*c*x + b^2))/((b^2*c - 4*a*c^2)*d), -arctan(1/2*sqrt(b^2*c - 4*a*c^2)*sqrt(c*x^2 + b*
x + a)/(c^2*x^2 + b*c*x + a*c))/(sqrt(b^2*c - 4*a*c^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{1}{b \sqrt{a + b x + c x^{2}} + 2 c x \sqrt{a + b x + c x^{2}}}\, dx}{d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/(b*sqrt(a + b*x + c*x**2) + 2*c*x*sqrt(a + b*x + c*x**2)), x)/d

________________________________________________________________________________________

Giac [A]  time = 1.15107, size = 88, normalized size = 1.6 \begin{align*} \frac{2 \, \arctan \left (-\frac{2 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )} c + b \sqrt{c}}{\sqrt{b^{2} c - 4 \, a c^{2}}}\right )}{\sqrt{b^{2} c - 4 \, a c^{2}} d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

2*arctan(-(2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*c + b*sqrt(c))/sqrt(b^2*c - 4*a*c^2))/(sqrt(b^2*c - 4*a*c^2)*
d)