### 3.1218 $$\int (b d+2 c d x)^4 (a+b x+c x^2)^{5/2} \, dx$$

Optimal. Leaf size=249 $-\frac{3 d^4 \left (b^2-4 a c\right )^4 (b+2 c x) \sqrt{a+b x+c x^2}}{8192 c^3}-\frac{d^4 \left (b^2-4 a c\right )^3 (b+2 c x)^3 \sqrt{a+b x+c x^2}}{4096 c^3}+\frac{d^4 \left (b^2-4 a c\right )^2 (b+2 c x)^5 \sqrt{a+b x+c x^2}}{1024 c^3}-\frac{d^4 \left (b^2-4 a c\right ) (b+2 c x)^5 \left (a+b x+c x^2\right )^{3/2}}{128 c^2}-\frac{3 d^4 \left (b^2-4 a c\right )^5 \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{16384 c^{7/2}}+\frac{d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{5/2}}{20 c}$

[Out]

(-3*(b^2 - 4*a*c)^4*d^4*(b + 2*c*x)*Sqrt[a + b*x + c*x^2])/(8192*c^3) - ((b^2 - 4*a*c)^3*d^4*(b + 2*c*x)^3*Sqr
t[a + b*x + c*x^2])/(4096*c^3) + ((b^2 - 4*a*c)^2*d^4*(b + 2*c*x)^5*Sqrt[a + b*x + c*x^2])/(1024*c^3) - ((b^2
- 4*a*c)*d^4*(b + 2*c*x)^5*(a + b*x + c*x^2)^(3/2))/(128*c^2) + (d^4*(b + 2*c*x)^5*(a + b*x + c*x^2)^(5/2))/(2
0*c) - (3*(b^2 - 4*a*c)^5*d^4*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(16384*c^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.170779, antiderivative size = 249, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 26, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.154, Rules used = {685, 692, 621, 206} $-\frac{3 d^4 \left (b^2-4 a c\right )^4 (b+2 c x) \sqrt{a+b x+c x^2}}{8192 c^3}-\frac{d^4 \left (b^2-4 a c\right )^3 (b+2 c x)^3 \sqrt{a+b x+c x^2}}{4096 c^3}+\frac{d^4 \left (b^2-4 a c\right )^2 (b+2 c x)^5 \sqrt{a+b x+c x^2}}{1024 c^3}-\frac{d^4 \left (b^2-4 a c\right ) (b+2 c x)^5 \left (a+b x+c x^2\right )^{3/2}}{128 c^2}-\frac{3 d^4 \left (b^2-4 a c\right )^5 \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{16384 c^{7/2}}+\frac{d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{5/2}}{20 c}$

Antiderivative was successfully veriﬁed.

[In]

Int[(b*d + 2*c*d*x)^4*(a + b*x + c*x^2)^(5/2),x]

[Out]

(-3*(b^2 - 4*a*c)^4*d^4*(b + 2*c*x)*Sqrt[a + b*x + c*x^2])/(8192*c^3) - ((b^2 - 4*a*c)^3*d^4*(b + 2*c*x)^3*Sqr
t[a + b*x + c*x^2])/(4096*c^3) + ((b^2 - 4*a*c)^2*d^4*(b + 2*c*x)^5*Sqrt[a + b*x + c*x^2])/(1024*c^3) - ((b^2
- 4*a*c)*d^4*(b + 2*c*x)^5*(a + b*x + c*x^2)^(3/2))/(128*c^2) + (d^4*(b + 2*c*x)^5*(a + b*x + c*x^2)^(5/2))/(2
0*c) - (3*(b^2 - 4*a*c)^5*d^4*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(16384*c^(7/2))

Rule 685

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[(d*p*(b^2 - 4*a*c))/(b*e*(m + 2*p + 1)), Int[(d + e*x)^m*(a +
b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] &&
NeQ[m + 2*p + 3, 0] && GtQ[p, 0] &&  !LtQ[m, -1] &&  !(IGtQ[(m - 1)/2, 0] && ( !IntegerQ[p] || LtQ[m, 2*p]))
&& RationalQ[m] && IntegerQ[2*p]

Rule 692

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*d*(d + e*x)^(m -
1)*(a + b*x + c*x^2)^(p + 1))/(b*(m + 2*p + 1)), x] + Dist[(d^2*(m - 1)*(b^2 - 4*a*c))/(b^2*(m + 2*p + 1)), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (b d+2 c d x)^4 \left (a+b x+c x^2\right )^{5/2} \, dx &=\frac{d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{5/2}}{20 c}-\frac{\left (b^2-4 a c\right ) \int (b d+2 c d x)^4 \left (a+b x+c x^2\right )^{3/2} \, dx}{8 c}\\ &=-\frac{\left (b^2-4 a c\right ) d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{3/2}}{128 c^2}+\frac{d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{5/2}}{20 c}+\frac{\left (3 \left (b^2-4 a c\right )^2\right ) \int (b d+2 c d x)^4 \sqrt{a+b x+c x^2} \, dx}{256 c^2}\\ &=\frac{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^5 \sqrt{a+b x+c x^2}}{1024 c^3}-\frac{\left (b^2-4 a c\right ) d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{3/2}}{128 c^2}+\frac{d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{5/2}}{20 c}-\frac{\left (b^2-4 a c\right )^3 \int \frac{(b d+2 c d x)^4}{\sqrt{a+b x+c x^2}} \, dx}{2048 c^3}\\ &=-\frac{\left (b^2-4 a c\right )^3 d^4 (b+2 c x)^3 \sqrt{a+b x+c x^2}}{4096 c^3}+\frac{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^5 \sqrt{a+b x+c x^2}}{1024 c^3}-\frac{\left (b^2-4 a c\right ) d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{3/2}}{128 c^2}+\frac{d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{5/2}}{20 c}-\frac{\left (3 \left (b^2-4 a c\right )^4 d^2\right ) \int \frac{(b d+2 c d x)^2}{\sqrt{a+b x+c x^2}} \, dx}{8192 c^3}\\ &=-\frac{3 \left (b^2-4 a c\right )^4 d^4 (b+2 c x) \sqrt{a+b x+c x^2}}{8192 c^3}-\frac{\left (b^2-4 a c\right )^3 d^4 (b+2 c x)^3 \sqrt{a+b x+c x^2}}{4096 c^3}+\frac{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^5 \sqrt{a+b x+c x^2}}{1024 c^3}-\frac{\left (b^2-4 a c\right ) d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{3/2}}{128 c^2}+\frac{d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{5/2}}{20 c}-\frac{\left (3 \left (b^2-4 a c\right )^5 d^4\right ) \int \frac{1}{\sqrt{a+b x+c x^2}} \, dx}{16384 c^3}\\ &=-\frac{3 \left (b^2-4 a c\right )^4 d^4 (b+2 c x) \sqrt{a+b x+c x^2}}{8192 c^3}-\frac{\left (b^2-4 a c\right )^3 d^4 (b+2 c x)^3 \sqrt{a+b x+c x^2}}{4096 c^3}+\frac{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^5 \sqrt{a+b x+c x^2}}{1024 c^3}-\frac{\left (b^2-4 a c\right ) d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{3/2}}{128 c^2}+\frac{d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{5/2}}{20 c}-\frac{\left (3 \left (b^2-4 a c\right )^5 d^4\right ) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )}{8192 c^3}\\ &=-\frac{3 \left (b^2-4 a c\right )^4 d^4 (b+2 c x) \sqrt{a+b x+c x^2}}{8192 c^3}-\frac{\left (b^2-4 a c\right )^3 d^4 (b+2 c x)^3 \sqrt{a+b x+c x^2}}{4096 c^3}+\frac{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^5 \sqrt{a+b x+c x^2}}{1024 c^3}-\frac{\left (b^2-4 a c\right ) d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{3/2}}{128 c^2}+\frac{d^4 (b+2 c x)^5 \left (a+b x+c x^2\right )^{5/2}}{20 c}-\frac{3 \left (b^2-4 a c\right )^5 d^4 \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{16384 c^{7/2}}\\ \end{align*}

Mathematica [A]  time = 3.74033, size = 265, normalized size = 1.06 $\frac{1}{5} d^4 \left ((b+2 c x)^3 (a+x (b+c x))^{7/2}-\frac{3}{2} c \left (a-\frac{b^2}{4 c}\right ) (b+2 c x) \sqrt{a+x (b+c x)} \left (\frac{\left (b^2-4 a c\right ) \left (16 c^2 \left (33 a^2+26 a c x^2+8 c^2 x^4\right )+8 b^2 c \left (11 c x^2-20 a\right )+32 b c^2 x \left (13 a+8 c x^2\right )-40 b^3 c x+15 b^4\right )}{3072 c^3}-\frac{5 \sqrt{c} \sqrt{4 a-\frac{b^2}{c}} (a+x (b+c x))^3 \sinh ^{-1}\left (\frac{b+2 c x}{\sqrt{c} \sqrt{4 a-\frac{b^2}{c}}}\right )}{2048 (b+2 c x) \left (\frac{c (a+x (b+c x))}{4 a c-b^2}\right )^{7/2}}+(a+x (b+c x))^3\right )\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(b*d + 2*c*d*x)^4*(a + b*x + c*x^2)^(5/2),x]

[Out]

(d^4*((b + 2*c*x)^3*(a + x*(b + c*x))^(7/2) - (3*(a - b^2/(4*c))*c*(b + 2*c*x)*Sqrt[a + x*(b + c*x)]*((a + x*(
b + c*x))^3 + ((b^2 - 4*a*c)*(15*b^4 - 40*b^3*c*x + 32*b*c^2*x*(13*a + 8*c*x^2) + 8*b^2*c*(-20*a + 11*c*x^2) +
16*c^2*(33*a^2 + 26*a*c*x^2 + 8*c^2*x^4)))/(3072*c^3) - (5*Sqrt[4*a - b^2/c]*Sqrt[c]*(a + x*(b + c*x))^3*ArcS
inh[(b + 2*c*x)/(Sqrt[4*a - b^2/c]*Sqrt[c])])/(2048*(b + 2*c*x)*((c*(a + x*(b + c*x)))/(-b^2 + 4*a*c))^(7/2)))
)/2))/5

________________________________________________________________________________________

Maple [B]  time = 0.056, size = 920, normalized size = 3.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*d*x+b*d)^4*(c*x^2+b*x+a)^(5/2),x)

[Out]

-3/32*d^4*c*b^2*a^2*(c*x^2+b*x+a)^(3/2)*x-3/16*d^4*c*b^2*a^3*(c*x^2+b*x+a)^(1/2)*x-3/5*d^4*c^2*a*x*(c*x^2+b*x+
a)^(7/2)+27/20*d^4*c*b^2*x*(c*x^2+b*x+a)^(7/2)-1/512*d^4/c*b^6*(c*x^2+b*x+a)^(3/2)*x+3/256*d^4/c*b^5*(c*x^2+b*
x+a)^(3/2)*a+3/4096*d^4/c^2*b^8*(c*x^2+b*x+a)^(1/2)*x+3/128*d^4*b^4*(c*x^2+b*x+a)^(3/2)*x*a+9/128*d^4*b^4*(c*x
^2+b*x+a)^(1/2)*x*a^2-3/512*d^4/c^2*b^7*(c*x^2+b*x+a)^(1/2)*a+12/5*d^4*c^2*b*x^2*(c*x^2+b*x+a)^(7/2)-3/10*d^4*
c*b*a*(c*x^2+b*x+a)^(7/2)-15/64*d^4*c^(1/2)*b^2*a^4*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))+15/128*d^4*b^4
/c^(1/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))*a^3-15/512*d^4*b^6/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+
b*x+a)^(1/2))*a^2+15/4096*d^4*b^8/c^(5/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))*a+1/10*d^4*c^2*a^2*x*(c*
x^2+b*x+a)^(5/2)+1/20*d^4*c*a^2*(c*x^2+b*x+a)^(5/2)*b+1/8*d^4*c^2*a^3*(c*x^2+b*x+a)^(3/2)*x+1/16*d^4*c*a^3*(c*
x^2+b*x+a)^(3/2)*b+3/16*d^4*c^2*a^4*(c*x^2+b*x+a)^(1/2)*x+3/32*d^4*c*a^4*(c*x^2+b*x+a)^(1/2)*b+9/256*d^4/c*b^5
*(c*x^2+b*x+a)^(1/2)*a^2+11/40*d^4*b^3*(c*x^2+b*x+a)^(7/2)-3/32*d^4*b^3*a^3*(c*x^2+b*x+a)^(1/2)+1/160*d^4*b^4*
x*(c*x^2+b*x+a)^(5/2)-3/16384*d^4*b^10/c^(7/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))+3/16*d^4*c^(3/2)*a^
5*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))+8/5*d^4*c^3*x^3*(c*x^2+b*x+a)^(7/2)+1/320*d^4/c*b^5*(c*x^2+b*x+a
)^(5/2)-1/1024*d^4/c^2*b^7*(c*x^2+b*x+a)^(3/2)+3/8192*d^4/c^3*b^9*(c*x^2+b*x+a)^(1/2)-1/40*d^4*b^3*a*(c*x^2+b*
x+a)^(5/2)-3/64*d^4*b^3*a^2*(c*x^2+b*x+a)^(3/2)-1/20*d^4*c*b^2*a*x*(c*x^2+b*x+a)^(5/2)-3/256*d^4/c*b^6*(c*x^2+
b*x+a)^(1/2)*x*a

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^4*(c*x^2+b*x+a)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.82941, size = 2192, normalized size = 8.8 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^4*(c*x^2+b*x+a)^(5/2),x, algorithm="fricas")

[Out]

[-1/163840*(15*(b^10 - 20*a*b^8*c + 160*a^2*b^6*c^2 - 640*a^3*b^4*c^3 + 1280*a^4*b^2*c^4 - 1024*a^5*c^5)*sqrt(
c)*d^4*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) - 4*(65536*c^10*d
^4*x^9 + 294912*b*c^9*d^4*x^8 + 6144*(89*b^2*c^8 + 28*a*c^9)*d^4*x^7 + 21504*(25*b^3*c^7 + 28*a*b*c^8)*d^4*x^6
+ 256*(1165*b^4*c^6 + 3280*a*b^2*c^7 + 496*a^2*c^8)*d^4*x^5 + 128*(701*b^5*c^5 + 4640*a*b^3*c^6 + 2480*a^2*b*
c^7)*d^4*x^4 + 16*(731*b^6*c^4 + 13660*a*b^4*c^5 + 19600*a^2*b^2*c^6 + 320*a^3*c^7)*d^4*x^3 + 8*(b^7*c^3 + 437
2*a*b^5*c^4 + 19120*a^2*b^3*c^5 + 960*a^3*b*c^6)*d^4*x^2 - 2*(5*b^8*c^2 - 88*a*b^6*c^3 - 16960*a^2*b^4*c^4 - 5
760*a^3*b^2*c^5 + 3840*a^4*c^6)*d^4*x + (15*b^9*c - 280*a*b^7*c^2 + 2048*a^2*b^5*c^3 + 4480*a^3*b^3*c^4 - 3840
*a^4*b*c^5)*d^4)*sqrt(c*x^2 + b*x + a))/c^4, 1/81920*(15*(b^10 - 20*a*b^8*c + 160*a^2*b^6*c^2 - 640*a^3*b^4*c^
3 + 1280*a^4*b^2*c^4 - 1024*a^5*c^5)*sqrt(-c)*d^4*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x
^2 + b*c*x + a*c)) + 2*(65536*c^10*d^4*x^9 + 294912*b*c^9*d^4*x^8 + 6144*(89*b^2*c^8 + 28*a*c^9)*d^4*x^7 + 215
04*(25*b^3*c^7 + 28*a*b*c^8)*d^4*x^6 + 256*(1165*b^4*c^6 + 3280*a*b^2*c^7 + 496*a^2*c^8)*d^4*x^5 + 128*(701*b^
5*c^5 + 4640*a*b^3*c^6 + 2480*a^2*b*c^7)*d^4*x^4 + 16*(731*b^6*c^4 + 13660*a*b^4*c^5 + 19600*a^2*b^2*c^6 + 320
*a^3*c^7)*d^4*x^3 + 8*(b^7*c^3 + 4372*a*b^5*c^4 + 19120*a^2*b^3*c^5 + 960*a^3*b*c^6)*d^4*x^2 - 2*(5*b^8*c^2 -
88*a*b^6*c^3 - 16960*a^2*b^4*c^4 - 5760*a^3*b^2*c^5 + 3840*a^4*c^6)*d^4*x + (15*b^9*c - 280*a*b^7*c^2 + 2048*a
^2*b^5*c^3 + 4480*a^3*b^3*c^4 - 3840*a^4*b*c^5)*d^4)*sqrt(c*x^2 + b*x + a))/c^4]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} d^{4} \left (\int a^{2} b^{4} \sqrt{a + b x + c x^{2}}\, dx + \int b^{6} x^{2} \sqrt{a + b x + c x^{2}}\, dx + \int 16 c^{6} x^{8} \sqrt{a + b x + c x^{2}}\, dx + \int 2 a b^{5} x \sqrt{a + b x + c x^{2}}\, dx + \int 32 a c^{5} x^{6} \sqrt{a + b x + c x^{2}}\, dx + \int 16 a^{2} c^{4} x^{4} \sqrt{a + b x + c x^{2}}\, dx + \int 64 b c^{5} x^{7} \sqrt{a + b x + c x^{2}}\, dx + \int 104 b^{2} c^{4} x^{6} \sqrt{a + b x + c x^{2}}\, dx + \int 88 b^{3} c^{3} x^{5} \sqrt{a + b x + c x^{2}}\, dx + \int 41 b^{4} c^{2} x^{4} \sqrt{a + b x + c x^{2}}\, dx + \int 10 b^{5} c x^{3} \sqrt{a + b x + c x^{2}}\, dx + \int 96 a b c^{4} x^{5} \sqrt{a + b x + c x^{2}}\, dx + \int 112 a b^{2} c^{3} x^{4} \sqrt{a + b x + c x^{2}}\, dx + \int 64 a b^{3} c^{2} x^{3} \sqrt{a + b x + c x^{2}}\, dx + \int 18 a b^{4} c x^{2} \sqrt{a + b x + c x^{2}}\, dx + \int 32 a^{2} b c^{3} x^{3} \sqrt{a + b x + c x^{2}}\, dx + \int 24 a^{2} b^{2} c^{2} x^{2} \sqrt{a + b x + c x^{2}}\, dx + \int 8 a^{2} b^{3} c x \sqrt{a + b x + c x^{2}}\, dx\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)**4*(c*x**2+b*x+a)**(5/2),x)

[Out]

d**4*(Integral(a**2*b**4*sqrt(a + b*x + c*x**2), x) + Integral(b**6*x**2*sqrt(a + b*x + c*x**2), x) + Integral
(16*c**6*x**8*sqrt(a + b*x + c*x**2), x) + Integral(2*a*b**5*x*sqrt(a + b*x + c*x**2), x) + Integral(32*a*c**5
*x**6*sqrt(a + b*x + c*x**2), x) + Integral(16*a**2*c**4*x**4*sqrt(a + b*x + c*x**2), x) + Integral(64*b*c**5*
x**7*sqrt(a + b*x + c*x**2), x) + Integral(104*b**2*c**4*x**6*sqrt(a + b*x + c*x**2), x) + Integral(88*b**3*c*
*3*x**5*sqrt(a + b*x + c*x**2), x) + Integral(41*b**4*c**2*x**4*sqrt(a + b*x + c*x**2), x) + Integral(10*b**5*
c*x**3*sqrt(a + b*x + c*x**2), x) + Integral(96*a*b*c**4*x**5*sqrt(a + b*x + c*x**2), x) + Integral(112*a*b**2
*c**3*x**4*sqrt(a + b*x + c*x**2), x) + Integral(64*a*b**3*c**2*x**3*sqrt(a + b*x + c*x**2), x) + Integral(18*
a*b**4*c*x**2*sqrt(a + b*x + c*x**2), x) + Integral(32*a**2*b*c**3*x**3*sqrt(a + b*x + c*x**2), x) + Integral(
24*a**2*b**2*c**2*x**2*sqrt(a + b*x + c*x**2), x) + Integral(8*a**2*b**3*c*x*sqrt(a + b*x + c*x**2), x))

________________________________________________________________________________________

Giac [B]  time = 1.20954, size = 738, normalized size = 2.96 \begin{align*} \frac{1}{40960} \, \sqrt{c x^{2} + b x + a}{\left (2 \,{\left (4 \,{\left (2 \,{\left (8 \,{\left (2 \,{\left (4 \,{\left (2 \,{\left (16 \,{\left (2 \, c^{6} d^{4} x + 9 \, b c^{5} d^{4}\right )} x + \frac{3 \,{\left (89 \, b^{2} c^{13} d^{4} + 28 \, a c^{14} d^{4}\right )}}{c^{9}}\right )} x + \frac{21 \,{\left (25 \, b^{3} c^{12} d^{4} + 28 \, a b c^{13} d^{4}\right )}}{c^{9}}\right )} x + \frac{1165 \, b^{4} c^{11} d^{4} + 3280 \, a b^{2} c^{12} d^{4} + 496 \, a^{2} c^{13} d^{4}}{c^{9}}\right )} x + \frac{701 \, b^{5} c^{10} d^{4} + 4640 \, a b^{3} c^{11} d^{4} + 2480 \, a^{2} b c^{12} d^{4}}{c^{9}}\right )} x + \frac{731 \, b^{6} c^{9} d^{4} + 13660 \, a b^{4} c^{10} d^{4} + 19600 \, a^{2} b^{2} c^{11} d^{4} + 320 \, a^{3} c^{12} d^{4}}{c^{9}}\right )} x + \frac{b^{7} c^{8} d^{4} + 4372 \, a b^{5} c^{9} d^{4} + 19120 \, a^{2} b^{3} c^{10} d^{4} + 960 \, a^{3} b c^{11} d^{4}}{c^{9}}\right )} x - \frac{5 \, b^{8} c^{7} d^{4} - 88 \, a b^{6} c^{8} d^{4} - 16960 \, a^{2} b^{4} c^{9} d^{4} - 5760 \, a^{3} b^{2} c^{10} d^{4} + 3840 \, a^{4} c^{11} d^{4}}{c^{9}}\right )} x + \frac{15 \, b^{9} c^{6} d^{4} - 280 \, a b^{7} c^{7} d^{4} + 2048 \, a^{2} b^{5} c^{8} d^{4} + 4480 \, a^{3} b^{3} c^{9} d^{4} - 3840 \, a^{4} b c^{10} d^{4}}{c^{9}}\right )} + \frac{3 \,{\left (b^{10} d^{4} - 20 \, a b^{8} c d^{4} + 160 \, a^{2} b^{6} c^{2} d^{4} - 640 \, a^{3} b^{4} c^{3} d^{4} + 1280 \, a^{4} b^{2} c^{4} d^{4} - 1024 \, a^{5} c^{5} d^{4}\right )} \log \left ({\left | -2 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )} \sqrt{c} - b \right |}\right )}{16384 \, c^{\frac{7}{2}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^4*(c*x^2+b*x+a)^(5/2),x, algorithm="giac")

[Out]

1/40960*sqrt(c*x^2 + b*x + a)*(2*(4*(2*(8*(2*(4*(2*(16*(2*c^6*d^4*x + 9*b*c^5*d^4)*x + 3*(89*b^2*c^13*d^4 + 28
*a*c^14*d^4)/c^9)*x + 21*(25*b^3*c^12*d^4 + 28*a*b*c^13*d^4)/c^9)*x + (1165*b^4*c^11*d^4 + 3280*a*b^2*c^12*d^4
+ 496*a^2*c^13*d^4)/c^9)*x + (701*b^5*c^10*d^4 + 4640*a*b^3*c^11*d^4 + 2480*a^2*b*c^12*d^4)/c^9)*x + (731*b^6
*c^9*d^4 + 13660*a*b^4*c^10*d^4 + 19600*a^2*b^2*c^11*d^4 + 320*a^3*c^12*d^4)/c^9)*x + (b^7*c^8*d^4 + 4372*a*b^
5*c^9*d^4 + 19120*a^2*b^3*c^10*d^4 + 960*a^3*b*c^11*d^4)/c^9)*x - (5*b^8*c^7*d^4 - 88*a*b^6*c^8*d^4 - 16960*a^
2*b^4*c^9*d^4 - 5760*a^3*b^2*c^10*d^4 + 3840*a^4*c^11*d^4)/c^9)*x + (15*b^9*c^6*d^4 - 280*a*b^7*c^7*d^4 + 2048
*a^2*b^5*c^8*d^4 + 4480*a^3*b^3*c^9*d^4 - 3840*a^4*b*c^10*d^4)/c^9) + 3/16384*(b^10*d^4 - 20*a*b^8*c*d^4 + 160
*a^2*b^6*c^2*d^4 - 640*a^3*b^4*c^3*d^4 + 1280*a^4*b^2*c^4*d^4 - 1024*a^5*c^5*d^4)*log(abs(-2*(sqrt(c)*x - sqrt
(c*x^2 + b*x + a))*sqrt(c) - b))/c^(7/2)