### 3.1190 $$\int \frac{1}{(b d+2 c d x)^4 (a+b x+c x^2)^3} \, dx$$

Optimal. Leaf size=168 $\frac{140 c^2}{d^4 \left (b^2-4 a c\right )^4 (b+2 c x)}+\frac{140 c^2}{3 d^4 \left (b^2-4 a c\right )^3 (b+2 c x)^3}-\frac{140 c^2 \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{d^4 \left (b^2-4 a c\right )^{9/2}}+\frac{7 c}{d^4 \left (b^2-4 a c\right )^2 (b+2 c x)^3 \left (a+b x+c x^2\right )}-\frac{1}{2 d^4 \left (b^2-4 a c\right ) (b+2 c x)^3 \left (a+b x+c x^2\right )^2}$

[Out]

(140*c^2)/(3*(b^2 - 4*a*c)^3*d^4*(b + 2*c*x)^3) + (140*c^2)/((b^2 - 4*a*c)^4*d^4*(b + 2*c*x)) - 1/(2*(b^2 - 4*
a*c)*d^4*(b + 2*c*x)^3*(a + b*x + c*x^2)^2) + (7*c)/((b^2 - 4*a*c)^2*d^4*(b + 2*c*x)^3*(a + b*x + c*x^2)) - (1
40*c^2*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/((b^2 - 4*a*c)^(9/2)*d^4)

________________________________________________________________________________________

Rubi [A]  time = 0.146113, antiderivative size = 168, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.167, Rules used = {687, 693, 618, 206} $\frac{140 c^2}{d^4 \left (b^2-4 a c\right )^4 (b+2 c x)}+\frac{140 c^2}{3 d^4 \left (b^2-4 a c\right )^3 (b+2 c x)^3}-\frac{140 c^2 \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{d^4 \left (b^2-4 a c\right )^{9/2}}+\frac{7 c}{d^4 \left (b^2-4 a c\right )^2 (b+2 c x)^3 \left (a+b x+c x^2\right )}-\frac{1}{2 d^4 \left (b^2-4 a c\right ) (b+2 c x)^3 \left (a+b x+c x^2\right )^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((b*d + 2*c*d*x)^4*(a + b*x + c*x^2)^3),x]

[Out]

(140*c^2)/(3*(b^2 - 4*a*c)^3*d^4*(b + 2*c*x)^3) + (140*c^2)/((b^2 - 4*a*c)^4*d^4*(b + 2*c*x)) - 1/(2*(b^2 - 4*
a*c)*d^4*(b + 2*c*x)^3*(a + b*x + c*x^2)^2) + (7*c)/((b^2 - 4*a*c)^2*d^4*(b + 2*c*x)^3*(a + b*x + c*x^2)) - (1
40*c^2*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/((b^2 - 4*a*c)^(9/2)*d^4)

Rule 687

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*c*(d + e*x)^(m +
1)*(a + b*x + c*x^2)^(p + 1))/(e*(p + 1)*(b^2 - 4*a*c)), x] - Dist[(2*c*e*(m + 2*p + 3))/(e*(p + 1)*(b^2 - 4*a
*c)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0]
&& EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[p, -1] &&  !GtQ[m, 1] && RationalQ[m] && IntegerQ[2*p]

Rule 693

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-2*b*d*(d + e*x)^(m
+ 1)*(a + b*x + c*x^2)^(p + 1))/(d^2*(m + 1)*(b^2 - 4*a*c)), x] + Dist[(b^2*(m + 2*p + 3))/(d^2*(m + 1)*(b^2
- 4*a*c)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*
c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[m, -1] && (IntegerQ[2*p] || (IntegerQ[m] && Rationa
lQ[p]) || IntegerQ[(m + 2*p + 3)/2])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{(b d+2 c d x)^4 \left (a+b x+c x^2\right )^3} \, dx &=-\frac{1}{2 \left (b^2-4 a c\right ) d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )^2}-\frac{(7 c) \int \frac{1}{(b d+2 c d x)^4 \left (a+b x+c x^2\right )^2} \, dx}{b^2-4 a c}\\ &=-\frac{1}{2 \left (b^2-4 a c\right ) d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )^2}+\frac{7 c}{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )}+\frac{\left (70 c^2\right ) \int \frac{1}{(b d+2 c d x)^4 \left (a+b x+c x^2\right )} \, dx}{\left (b^2-4 a c\right )^2}\\ &=\frac{140 c^2}{3 \left (b^2-4 a c\right )^3 d^4 (b+2 c x)^3}-\frac{1}{2 \left (b^2-4 a c\right ) d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )^2}+\frac{7 c}{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )}+\frac{\left (70 c^2\right ) \int \frac{1}{(b d+2 c d x)^2 \left (a+b x+c x^2\right )} \, dx}{\left (b^2-4 a c\right )^3 d^2}\\ &=\frac{140 c^2}{3 \left (b^2-4 a c\right )^3 d^4 (b+2 c x)^3}+\frac{140 c^2}{\left (b^2-4 a c\right )^4 d^4 (b+2 c x)}-\frac{1}{2 \left (b^2-4 a c\right ) d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )^2}+\frac{7 c}{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )}+\frac{\left (70 c^2\right ) \int \frac{1}{a+b x+c x^2} \, dx}{\left (b^2-4 a c\right )^4 d^4}\\ &=\frac{140 c^2}{3 \left (b^2-4 a c\right )^3 d^4 (b+2 c x)^3}+\frac{140 c^2}{\left (b^2-4 a c\right )^4 d^4 (b+2 c x)}-\frac{1}{2 \left (b^2-4 a c\right ) d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )^2}+\frac{7 c}{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )}-\frac{\left (140 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x\right )}{\left (b^2-4 a c\right )^4 d^4}\\ &=\frac{140 c^2}{3 \left (b^2-4 a c\right )^3 d^4 (b+2 c x)^3}+\frac{140 c^2}{\left (b^2-4 a c\right )^4 d^4 (b+2 c x)}-\frac{1}{2 \left (b^2-4 a c\right ) d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )^2}+\frac{7 c}{\left (b^2-4 a c\right )^2 d^4 (b+2 c x)^3 \left (a+b x+c x^2\right )}-\frac{140 c^2 \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{9/2} d^4}\\ \end{align*}

Mathematica [A]  time = 0.338748, size = 140, normalized size = 0.83 $\frac{\frac{64 c^2 \left (b^2-4 a c\right )}{(b+2 c x)^3}+\frac{840 c^2 \tan ^{-1}\left (\frac{b+2 c x}{\sqrt{4 a c-b^2}}\right )}{\sqrt{4 a c-b^2}}-\frac{3 \left (b^2-4 a c\right ) (b+2 c x)}{(a+x (b+c x))^2}+\frac{66 c (b+2 c x)}{a+x (b+c x)}+\frac{576 c^2}{b+2 c x}}{6 d^4 \left (b^2-4 a c\right )^4}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((b*d + 2*c*d*x)^4*(a + b*x + c*x^2)^3),x]

[Out]

((64*c^2*(b^2 - 4*a*c))/(b + 2*c*x)^3 + (576*c^2)/(b + 2*c*x) - (3*(b^2 - 4*a*c)*(b + 2*c*x))/(a + x*(b + c*x)
)^2 + (66*c*(b + 2*c*x))/(a + x*(b + c*x)) + (840*c^2*ArcTan[(b + 2*c*x)/Sqrt[-b^2 + 4*a*c]])/Sqrt[-b^2 + 4*a*
c])/(6*(b^2 - 4*a*c)^4*d^4)

________________________________________________________________________________________

Maple [A]  time = 0.164, size = 301, normalized size = 1.8 \begin{align*} 22\,{\frac{{c}^{3}{x}^{3}}{{d}^{4} \left ( 4\,ac-{b}^{2} \right ) ^{4} \left ( c{x}^{2}+bx+a \right ) ^{2}}}+33\,{\frac{b{c}^{2}{x}^{2}}{{d}^{4} \left ( 4\,ac-{b}^{2} \right ) ^{4} \left ( c{x}^{2}+bx+a \right ) ^{2}}}+26\,{\frac{a{c}^{2}x}{{d}^{4} \left ( 4\,ac-{b}^{2} \right ) ^{4} \left ( c{x}^{2}+bx+a \right ) ^{2}}}+10\,{\frac{{b}^{2}cx}{{d}^{4} \left ( 4\,ac-{b}^{2} \right ) ^{4} \left ( c{x}^{2}+bx+a \right ) ^{2}}}+13\,{\frac{abc}{{d}^{4} \left ( 4\,ac-{b}^{2} \right ) ^{4} \left ( c{x}^{2}+bx+a \right ) ^{2}}}-{\frac{{b}^{3}}{2\,{d}^{4} \left ( 4\,ac-{b}^{2} \right ) ^{4} \left ( c{x}^{2}+bx+a \right ) ^{2}}}+140\,{\frac{{c}^{2}}{{d}^{4} \left ( 4\,ac-{b}^{2} \right ) ^{9/2}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) }+96\,{\frac{{c}^{2}}{{d}^{4} \left ( 4\,ac-{b}^{2} \right ) ^{4} \left ( 2\,cx+b \right ) }}-{\frac{32\,{c}^{2}}{3\,{d}^{4} \left ( 4\,ac-{b}^{2} \right ) ^{3} \left ( 2\,cx+b \right ) ^{3}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*c*d*x+b*d)^4/(c*x^2+b*x+a)^3,x)

[Out]

22/d^4/(4*a*c-b^2)^4/(c*x^2+b*x+a)^2*c^3*x^3+33/d^4/(4*a*c-b^2)^4/(c*x^2+b*x+a)^2*b*c^2*x^2+26/d^4/(4*a*c-b^2)
^4/(c*x^2+b*x+a)^2*a*c^2*x+10/d^4/(4*a*c-b^2)^4/(c*x^2+b*x+a)^2*b^2*c*x+13/d^4/(4*a*c-b^2)^4/(c*x^2+b*x+a)^2*a
*b*c-1/2/d^4/(4*a*c-b^2)^4/(c*x^2+b*x+a)^2*b^3+140/d^4/(4*a*c-b^2)^(9/2)*c^2*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2
))+96/d^4/(4*a*c-b^2)^4*c^2/(2*c*x+b)-32/3/d^4*c^2/(4*a*c-b^2)^3/(2*c*x+b)^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^4/(c*x^2+b*x+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.46057, size = 4655, normalized size = 27.71 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^4/(c*x^2+b*x+a)^3,x, algorithm="fricas")

[Out]

[-1/6*(3*b^8 - 90*a*b^6*c - 328*a^2*b^4*c^2 + 2816*a^3*b^2*c^3 - 1024*a^4*c^4 - 3360*(b^2*c^6 - 4*a*c^7)*x^6 -
10080*(b^3*c^5 - 4*a*b*c^6)*x^5 - 5600*(2*b^4*c^4 - 7*a*b^2*c^5 - 4*a^2*c^6)*x^4 - 5600*(b^5*c^3 - 2*a*b^3*c^
4 - 8*a^2*b*c^5)*x^3 - 14*(83*b^6*c^2 + 204*a*b^4*c^3 - 2016*a^2*b^2*c^4 - 512*a^3*c^5)*x^2 - 420*(8*c^7*x^7 +
28*b*c^6*x^6 + a^2*b^3*c^2 + 2*(19*b^2*c^5 + 8*a*c^6)*x^5 + 5*(5*b^3*c^4 + 8*a*b*c^5)*x^4 + 4*(2*b^4*c^3 + 9*
a*b^2*c^4 + 2*a^2*c^5)*x^3 + (b^5*c^2 + 14*a*b^3*c^3 + 12*a^2*b*c^4)*x^2 + 2*(a*b^4*c^2 + 3*a^2*b^2*c^3)*x)*sq
rt(b^2 - 4*a*c)*log((2*c^2*x^2 + 2*b*c*x + b^2 - 2*a*c - sqrt(b^2 - 4*a*c)*(2*c*x + b))/(c*x^2 + b*x + a)) - 1
4*(3*b^7*c + 124*a*b^5*c^2 - 416*a^2*b^3*c^3 - 512*a^3*b*c^4)*x)/(8*(b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7
- 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10)*d^4*x^7 + 28*(b^11*c^4 - 20*a*b^9*c^5 + 160*a^2*b^7*c^6
- 640*a^3*b^5*c^7 + 1280*a^4*b^3*c^8 - 1024*a^5*b*c^9)*d^4*x^6 + 2*(19*b^12*c^3 - 372*a*b^10*c^4 + 2880*a^2*b
^8*c^5 - 10880*a^3*b^6*c^6 + 19200*a^4*b^4*c^7 - 9216*a^5*b^2*c^8 - 8192*a^6*c^9)*d^4*x^5 + 5*(5*b^13*c^2 - 92
*a*b^11*c^3 + 640*a^2*b^9*c^4 - 1920*a^3*b^7*c^5 + 1280*a^4*b^5*c^6 + 5120*a^5*b^3*c^7 - 8192*a^6*b*c^8)*d^4*x
^4 + 4*(2*b^14*c - 31*a*b^12*c^2 + 142*a^2*b^10*c^3 + 120*a^3*b^8*c^4 - 2880*a^4*b^6*c^5 + 8192*a^5*b^4*c^6 -
6656*a^6*b^2*c^7 - 2048*a^7*c^8)*d^4*x^3 + (b^15 - 6*a*b^13*c - 108*a^2*b^11*c^2 + 1360*a^3*b^9*c^3 - 5760*a^4
*b^7*c^4 + 9216*a^5*b^5*c^5 + 1024*a^6*b^3*c^6 - 12288*a^7*b*c^7)*d^4*x^2 + 2*(a*b^14 - 17*a^2*b^12*c + 100*a^
3*b^10*c^2 - 160*a^4*b^8*c^3 - 640*a^5*b^6*c^4 + 2816*a^6*b^4*c^5 - 3072*a^7*b^2*c^6)*d^4*x + (a^2*b^13 - 20*a
^3*b^11*c + 160*a^4*b^9*c^2 - 640*a^5*b^7*c^3 + 1280*a^6*b^5*c^4 - 1024*a^7*b^3*c^5)*d^4), -1/6*(3*b^8 - 90*a*
b^6*c - 328*a^2*b^4*c^2 + 2816*a^3*b^2*c^3 - 1024*a^4*c^4 - 3360*(b^2*c^6 - 4*a*c^7)*x^6 - 10080*(b^3*c^5 - 4*
a*b*c^6)*x^5 - 5600*(2*b^4*c^4 - 7*a*b^2*c^5 - 4*a^2*c^6)*x^4 - 5600*(b^5*c^3 - 2*a*b^3*c^4 - 8*a^2*b*c^5)*x^3
- 14*(83*b^6*c^2 + 204*a*b^4*c^3 - 2016*a^2*b^2*c^4 - 512*a^3*c^5)*x^2 + 840*(8*c^7*x^7 + 28*b*c^6*x^6 + a^2*
b^3*c^2 + 2*(19*b^2*c^5 + 8*a*c^6)*x^5 + 5*(5*b^3*c^4 + 8*a*b*c^5)*x^4 + 4*(2*b^4*c^3 + 9*a*b^2*c^4 + 2*a^2*c^
5)*x^3 + (b^5*c^2 + 14*a*b^3*c^3 + 12*a^2*b*c^4)*x^2 + 2*(a*b^4*c^2 + 3*a^2*b^2*c^3)*x)*sqrt(-b^2 + 4*a*c)*arc
tan(-sqrt(-b^2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c)) - 14*(3*b^7*c + 124*a*b^5*c^2 - 416*a^2*b^3*c^3 - 512*a^3*b
*c^4)*x)/(8*(b^10*c^5 - 20*a*b^8*c^6 + 160*a^2*b^6*c^7 - 640*a^3*b^4*c^8 + 1280*a^4*b^2*c^9 - 1024*a^5*c^10)*d
^4*x^7 + 28*(b^11*c^4 - 20*a*b^9*c^5 + 160*a^2*b^7*c^6 - 640*a^3*b^5*c^7 + 1280*a^4*b^3*c^8 - 1024*a^5*b*c^9)*
d^4*x^6 + 2*(19*b^12*c^3 - 372*a*b^10*c^4 + 2880*a^2*b^8*c^5 - 10880*a^3*b^6*c^6 + 19200*a^4*b^4*c^7 - 9216*a^
5*b^2*c^8 - 8192*a^6*c^9)*d^4*x^5 + 5*(5*b^13*c^2 - 92*a*b^11*c^3 + 640*a^2*b^9*c^4 - 1920*a^3*b^7*c^5 + 1280*
a^4*b^5*c^6 + 5120*a^5*b^3*c^7 - 8192*a^6*b*c^8)*d^4*x^4 + 4*(2*b^14*c - 31*a*b^12*c^2 + 142*a^2*b^10*c^3 + 12
0*a^3*b^8*c^4 - 2880*a^4*b^6*c^5 + 8192*a^5*b^4*c^6 - 6656*a^6*b^2*c^7 - 2048*a^7*c^8)*d^4*x^3 + (b^15 - 6*a*b
^13*c - 108*a^2*b^11*c^2 + 1360*a^3*b^9*c^3 - 5760*a^4*b^7*c^4 + 9216*a^5*b^5*c^5 + 1024*a^6*b^3*c^6 - 12288*a
^7*b*c^7)*d^4*x^2 + 2*(a*b^14 - 17*a^2*b^12*c + 100*a^3*b^10*c^2 - 160*a^4*b^8*c^3 - 640*a^5*b^6*c^4 + 2816*a^
6*b^4*c^5 - 3072*a^7*b^2*c^6)*d^4*x + (a^2*b^13 - 20*a^3*b^11*c + 160*a^4*b^9*c^2 - 640*a^5*b^7*c^3 + 1280*a^6
*b^5*c^4 - 1024*a^7*b^3*c^5)*d^4)]

________________________________________________________________________________________

Sympy [B]  time = 97.5109, size = 1238, normalized size = 7.37 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)**4/(c*x**2+b*x+a)**3,x)

[Out]

-70*c**2*sqrt(-1/(4*a*c - b**2)**9)*log(x + (-71680*a**5*c**7*sqrt(-1/(4*a*c - b**2)**9) + 89600*a**4*b**2*c**
6*sqrt(-1/(4*a*c - b**2)**9) - 44800*a**3*b**4*c**5*sqrt(-1/(4*a*c - b**2)**9) + 11200*a**2*b**6*c**4*sqrt(-1/
(4*a*c - b**2)**9) - 1400*a*b**8*c**3*sqrt(-1/(4*a*c - b**2)**9) + 70*b**10*c**2*sqrt(-1/(4*a*c - b**2)**9) +
70*b*c**2)/(140*c**3))/d**4 + 70*c**2*sqrt(-1/(4*a*c - b**2)**9)*log(x + (71680*a**5*c**7*sqrt(-1/(4*a*c - b**
2)**9) - 89600*a**4*b**2*c**6*sqrt(-1/(4*a*c - b**2)**9) + 44800*a**3*b**4*c**5*sqrt(-1/(4*a*c - b**2)**9) - 1
1200*a**2*b**6*c**4*sqrt(-1/(4*a*c - b**2)**9) + 1400*a*b**8*c**3*sqrt(-1/(4*a*c - b**2)**9) - 70*b**10*c**2*s
qrt(-1/(4*a*c - b**2)**9) + 70*b*c**2)/(140*c**3))/d**4 + (-256*a**3*c**3 + 640*a**2*b**2*c**2 + 78*a*b**4*c -
3*b**6 + 10080*b*c**5*x**5 + 3360*c**6*x**6 + x**4*(5600*a*c**5 + 11200*b**2*c**4) + x**3*(11200*a*b*c**4 + 5
600*b**3*c**3) + x**2*(1792*a**2*c**4 + 7504*a*b**2*c**3 + 1162*b**4*c**2) + x*(1792*a**2*b*c**3 + 1904*a*b**3
*c**2 + 42*b**5*c))/(1536*a**6*b**3*c**4*d**4 - 1536*a**5*b**5*c**3*d**4 + 576*a**4*b**7*c**2*d**4 - 96*a**3*b
**9*c*d**4 + 6*a**2*b**11*d**4 + x**7*(12288*a**4*c**9*d**4 - 12288*a**3*b**2*c**8*d**4 + 4608*a**2*b**4*c**7*
d**4 - 768*a*b**6*c**6*d**4 + 48*b**8*c**5*d**4) + x**6*(43008*a**4*b*c**8*d**4 - 43008*a**3*b**3*c**7*d**4 +
16128*a**2*b**5*c**6*d**4 - 2688*a*b**7*c**5*d**4 + 168*b**9*c**4*d**4) + x**5*(24576*a**5*c**8*d**4 + 33792*a
**4*b**2*c**7*d**4 - 49152*a**3*b**4*c**6*d**4 + 20352*a**2*b**6*c**5*d**4 - 3552*a*b**8*c**4*d**4 + 228*b**10
*c**3*d**4) + x**4*(61440*a**5*b*c**7*d**4 - 23040*a**4*b**3*c**6*d**4 - 15360*a**3*b**5*c**5*d**4 + 10560*a**
2*b**7*c**4*d**4 - 2160*a*b**9*c**3*d**4 + 150*b**11*c**2*d**4) + x**3*(12288*a**6*c**7*d**4 + 43008*a**5*b**2
*c**6*d**4 - 38400*a**4*b**4*c**5*d**4 + 7680*a**3*b**6*c**4*d**4 + 1200*a**2*b**8*c**3*d**4 - 552*a*b**10*c**
2*d**4 + 48*b**12*c*d**4) + x**2*(18432*a**6*b*c**6*d**4 + 3072*a**5*b**3*c**5*d**4 - 13056*a**4*b**5*c**4*d**
4 + 5376*a**3*b**7*c**3*d**4 - 696*a**2*b**9*c**2*d**4 - 12*a*b**11*c*d**4 + 6*b**13*d**4) + x*(9216*a**6*b**2
*c**5*d**4 - 6144*a**5*b**4*c**4*d**4 + 384*a**4*b**6*c**3*d**4 + 576*a**3*b**8*c**2*d**4 - 156*a**2*b**10*c*d
**4 + 12*a*b**12*d**4))

________________________________________________________________________________________

Giac [A]  time = 1.25099, size = 420, normalized size = 2.5 \begin{align*} \frac{140 \, c^{2} \arctan \left (\frac{2 \, c x + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{{\left (b^{8} d^{4} - 16 \, a b^{6} c d^{4} + 96 \, a^{2} b^{4} c^{2} d^{4} - 256 \, a^{3} b^{2} c^{3} d^{4} + 256 \, a^{4} c^{4} d^{4}\right )} \sqrt{-b^{2} + 4 \, a c}} + \frac{44 \, c^{3} x^{3} + 66 \, b c^{2} x^{2} + 20 \, b^{2} c x + 52 \, a c^{2} x - b^{3} + 26 \, a b c}{2 \,{\left (b^{8} d^{4} - 16 \, a b^{6} c d^{4} + 96 \, a^{2} b^{4} c^{2} d^{4} - 256 \, a^{3} b^{2} c^{3} d^{4} + 256 \, a^{4} c^{4} d^{4}\right )}{\left (c x^{2} + b x + a\right )}^{2}} + \frac{64 \,{\left (18 \, c^{4} x^{2} + 18 \, b c^{3} x + 5 \, b^{2} c^{2} - 2 \, a c^{3}\right )}}{3 \,{\left (b^{8} d^{4} - 16 \, a b^{6} c d^{4} + 96 \, a^{2} b^{4} c^{2} d^{4} - 256 \, a^{3} b^{2} c^{3} d^{4} + 256 \, a^{4} c^{4} d^{4}\right )}{\left (2 \, c x + b\right )}^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^4/(c*x^2+b*x+a)^3,x, algorithm="giac")

[Out]

140*c^2*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/((b^8*d^4 - 16*a*b^6*c*d^4 + 96*a^2*b^4*c^2*d^4 - 256*a^3*b^2*c
^3*d^4 + 256*a^4*c^4*d^4)*sqrt(-b^2 + 4*a*c)) + 1/2*(44*c^3*x^3 + 66*b*c^2*x^2 + 20*b^2*c*x + 52*a*c^2*x - b^3
+ 26*a*b*c)/((b^8*d^4 - 16*a*b^6*c*d^4 + 96*a^2*b^4*c^2*d^4 - 256*a^3*b^2*c^3*d^4 + 256*a^4*c^4*d^4)*(c*x^2 +
b*x + a)^2) + 64/3*(18*c^4*x^2 + 18*b*c^3*x + 5*b^2*c^2 - 2*a*c^3)/((b^8*d^4 - 16*a*b^6*c*d^4 + 96*a^2*b^4*c^
2*d^4 - 256*a^3*b^2*c^3*d^4 + 256*a^4*c^4*d^4)*(2*c*x + b)^3)