3.1093 $$\int \frac{(d+e x)^m}{(c d^2+2 c d e x+c e^2 x^2)^3} \, dx$$

Optimal. Leaf size=24 $-\frac{(d+e x)^{m-5}}{c^3 e (5-m)}$

[Out]

-((d + e*x)^(-5 + m)/(c^3*e*(5 - m)))

________________________________________________________________________________________

Rubi [A]  time = 0.0102396, antiderivative size = 24, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.1, Rules used = {27, 12, 32} $-\frac{(d+e x)^{m-5}}{c^3 e (5-m)}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^m/(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^3,x]

[Out]

-((d + e*x)^(-5 + m)/(c^3*e*(5 - m)))

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{(d+e x)^m}{\left (c d^2+2 c d e x+c e^2 x^2\right )^3} \, dx &=\int \frac{(d+e x)^{-6+m}}{c^3} \, dx\\ &=\frac{\int (d+e x)^{-6+m} \, dx}{c^3}\\ &=-\frac{(d+e x)^{-5+m}}{c^3 e (5-m)}\\ \end{align*}

Mathematica [A]  time = 0.0144844, size = 21, normalized size = 0.88 $\frac{(d+e x)^{m-5}}{c^3 e (m-5)}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^m/(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^3,x]

[Out]

(d + e*x)^(-5 + m)/(c^3*e*(-5 + m))

________________________________________________________________________________________

Maple [A]  time = 0.042, size = 40, normalized size = 1.7 \begin{align*}{\frac{ \left ( ex+d \right ) ^{-1+m}}{ \left ({e}^{2}{x}^{2}+2\,dex+{d}^{2} \right ) ^{2}{c}^{3}e \left ( -5+m \right ) }} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m/(c*e^2*x^2+2*c*d*e*x+c*d^2)^3,x)

[Out]

(e*x+d)^(-1+m)/(e^2*x^2+2*d*e*x+d^2)^2/c^3/e/(-5+m)

________________________________________________________________________________________

Maxima [B]  time = 1.20799, size = 134, normalized size = 5.58 \begin{align*} \frac{{\left (e x + d\right )}^{m}}{c^{3} e^{6}{\left (m - 5\right )} x^{5} + 5 \, c^{3} d e^{5}{\left (m - 5\right )} x^{4} + 10 \, c^{3} d^{2} e^{4}{\left (m - 5\right )} x^{3} + 10 \, c^{3} d^{3} e^{3}{\left (m - 5\right )} x^{2} + 5 \, c^{3} d^{4} e^{2}{\left (m - 5\right )} x + c^{3} d^{5} e{\left (m - 5\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(c*e^2*x^2+2*c*d*e*x+c*d^2)^3,x, algorithm="maxima")

[Out]

(e*x + d)^m/(c^3*e^6*(m - 5)*x^5 + 5*c^3*d*e^5*(m - 5)*x^4 + 10*c^3*d^2*e^4*(m - 5)*x^3 + 10*c^3*d^3*e^3*(m -
5)*x^2 + 5*c^3*d^4*e^2*(m - 5)*x + c^3*d^5*e*(m - 5))

________________________________________________________________________________________

Fricas [B]  time = 2.49311, size = 306, normalized size = 12.75 \begin{align*} \frac{{\left (e x + d\right )}^{m}}{c^{3} d^{5} e m - 5 \, c^{3} d^{5} e +{\left (c^{3} e^{6} m - 5 \, c^{3} e^{6}\right )} x^{5} + 5 \,{\left (c^{3} d e^{5} m - 5 \, c^{3} d e^{5}\right )} x^{4} + 10 \,{\left (c^{3} d^{2} e^{4} m - 5 \, c^{3} d^{2} e^{4}\right )} x^{3} + 10 \,{\left (c^{3} d^{3} e^{3} m - 5 \, c^{3} d^{3} e^{3}\right )} x^{2} + 5 \,{\left (c^{3} d^{4} e^{2} m - 5 \, c^{3} d^{4} e^{2}\right )} x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(c*e^2*x^2+2*c*d*e*x+c*d^2)^3,x, algorithm="fricas")

[Out]

(e*x + d)^m/(c^3*d^5*e*m - 5*c^3*d^5*e + (c^3*e^6*m - 5*c^3*e^6)*x^5 + 5*(c^3*d*e^5*m - 5*c^3*d*e^5)*x^4 + 10*
(c^3*d^2*e^4*m - 5*c^3*d^2*e^4)*x^3 + 10*(c^3*d^3*e^3*m - 5*c^3*d^3*e^3)*x^2 + 5*(c^3*d^4*e^2*m - 5*c^3*d^4*e^
2)*x)

________________________________________________________________________________________

Sympy [A]  time = 3.70306, size = 201, normalized size = 8.38 \begin{align*} \begin{cases} \frac{x}{c^{3} d} & \text{for}\: e = 0 \wedge m = 5 \\\frac{d^{m} x}{c^{3} d^{6}} & \text{for}\: e = 0 \\\frac{\log{\left (\frac{d}{e} + x \right )}}{c^{3} e} & \text{for}\: m = 5 \\\frac{\left (d + e x\right )^{m}}{c^{3} d^{5} e m - 5 c^{3} d^{5} e + 5 c^{3} d^{4} e^{2} m x - 25 c^{3} d^{4} e^{2} x + 10 c^{3} d^{3} e^{3} m x^{2} - 50 c^{3} d^{3} e^{3} x^{2} + 10 c^{3} d^{2} e^{4} m x^{3} - 50 c^{3} d^{2} e^{4} x^{3} + 5 c^{3} d e^{5} m x^{4} - 25 c^{3} d e^{5} x^{4} + c^{3} e^{6} m x^{5} - 5 c^{3} e^{6} x^{5}} & \text{otherwise} \end{cases} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m/(c*e**2*x**2+2*c*d*e*x+c*d**2)**3,x)

[Out]

Piecewise((x/(c**3*d), Eq(e, 0) & Eq(m, 5)), (d**m*x/(c**3*d**6), Eq(e, 0)), (log(d/e + x)/(c**3*e), Eq(m, 5))
, ((d + e*x)**m/(c**3*d**5*e*m - 5*c**3*d**5*e + 5*c**3*d**4*e**2*m*x - 25*c**3*d**4*e**2*x + 10*c**3*d**3*e**
3*m*x**2 - 50*c**3*d**3*e**3*x**2 + 10*c**3*d**2*e**4*m*x**3 - 50*c**3*d**2*e**4*x**3 + 5*c**3*d*e**5*m*x**4 -
25*c**3*d*e**5*x**4 + c**3*e**6*m*x**5 - 5*c**3*e**6*x**5), True))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{m}}{{\left (c e^{2} x^{2} + 2 \, c d e x + c d^{2}\right )}^{3}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m/(c*e^2*x^2+2*c*d*e*x+c*d^2)^3,x, algorithm="giac")

[Out]

integrate((e*x + d)^m/(c*e^2*x^2 + 2*c*d*e*x + c*d^2)^3, x)