### 3.1060 $$\int \frac{(c d^2+2 c d e x+c e^2 x^2)^{5/2}}{(d+e x)^7} \, dx$$

Optimal. Leaf size=32 $-\frac{c^3}{e \sqrt{c d^2+2 c d e x+c e^2 x^2}}$

[Out]

-(c^3/(e*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]))

________________________________________________________________________________________

Rubi [A]  time = 0.0238005, antiderivative size = 32, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 32, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.062, Rules used = {643, 629} $-\frac{c^3}{e \sqrt{c d^2+2 c d e x+c e^2 x^2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(5/2)/(d + e*x)^7,x]

[Out]

-(c^3/(e*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]))

Rule 643

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^(m - 1)/c^((m - 1)/2
), Int[(d + e*x)*(a + b*x + c*x^2)^(p + (m - 1)/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c,
0] &&  !IntegerQ[p] && EqQ[2*c*d - b*e, 0] && IntegerQ[(m - 1)/2]

Rule 629

Int[((d_) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d*(a + b*x + c*x^2)^(p +
1))/(b*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rubi steps

\begin{align*} \int \frac{\left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2}}{(d+e x)^7} \, dx &=c^4 \int \frac{d+e x}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx\\ &=-\frac{c^3}{e \sqrt{c d^2+2 c d e x+c e^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0129414, size = 25, normalized size = 0.78 $-\frac{\left (c (d+e x)^2\right )^{5/2}}{e (d+e x)^6}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(5/2)/(d + e*x)^7,x]

[Out]

-((c*(d + e*x)^2)^(5/2)/(e*(d + e*x)^6))

________________________________________________________________________________________

Maple [A]  time = 0.039, size = 35, normalized size = 1.1 \begin{align*} -{\frac{1}{ \left ( ex+d \right ) ^{6}e} \left ( c{e}^{2}{x}^{2}+2\,cdex+c{d}^{2} \right ) ^{{\frac{5}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2)/(e*x+d)^7,x)

[Out]

-1/(e*x+d)^6/e*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2)/(e*x+d)^7,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [A]  time = 2.25277, size = 97, normalized size = 3.03 \begin{align*} -\frac{\sqrt{c e^{2} x^{2} + 2 \, c d e x + c d^{2}} c^{2}}{e^{3} x^{2} + 2 \, d e^{2} x + d^{2} e} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2)/(e*x+d)^7,x, algorithm="fricas")

[Out]

-sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*c^2/(e^3*x^2 + 2*d*e^2*x + d^2*e)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c \left (d + e x\right )^{2}\right )^{\frac{5}{2}}}{\left (d + e x\right )^{7}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e**2*x**2+2*c*d*e*x+c*d**2)**(5/2)/(e*x+d)**7,x)

[Out]

Integral((c*(d + e*x)**2)**(5/2)/(d + e*x)**7, x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(5/2)/(e*x+d)^7,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError