### 3.1049 $$\int \frac{(c d^2+2 c d e x+c e^2 x^2)^{3/2}}{(d+e x)^7} \, dx$$

Optimal. Leaf size=34 $-\frac{c^3}{3 e \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}}$

[Out]

-c^3/(3*e*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0236374, antiderivative size = 34, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 32, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.062, Rules used = {643, 629} $-\frac{c^3}{3 e \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2)/(d + e*x)^7,x]

[Out]

-c^3/(3*e*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2))

Rule 643

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^(m - 1)/c^((m - 1)/2
), Int[(d + e*x)*(a + b*x + c*x^2)^(p + (m - 1)/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c,
0] &&  !IntegerQ[p] && EqQ[2*c*d - b*e, 0] && IntegerQ[(m - 1)/2]

Rule 629

Int[((d_) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d*(a + b*x + c*x^2)^(p +
1))/(b*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rubi steps

\begin{align*} \int \frac{\left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}}{(d+e x)^7} \, dx &=c^4 \int \frac{d+e x}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2}} \, dx\\ &=-\frac{c^3}{3 e \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0089959, size = 27, normalized size = 0.79 $-\frac{\left (c (d+e x)^2\right )^{3/2}}{3 e (d+e x)^6}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2)/(d + e*x)^7,x]

[Out]

-(c*(d + e*x)^2)^(3/2)/(3*e*(d + e*x)^6)

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 35, normalized size = 1. \begin{align*} -{\frac{1}{3\, \left ( ex+d \right ) ^{6}e} \left ( c{e}^{2}{x}^{2}+2\,cdex+c{d}^{2} \right ) ^{{\frac{3}{2}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)/(e*x+d)^7,x)

[Out]

-1/3/(e*x+d)^6/e*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)/(e*x+d)^7,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 2.44491, size = 143, normalized size = 4.21 \begin{align*} -\frac{\sqrt{c e^{2} x^{2} + 2 \, c d e x + c d^{2}} c}{3 \,{\left (e^{5} x^{4} + 4 \, d e^{4} x^{3} + 6 \, d^{2} e^{3} x^{2} + 4 \, d^{3} e^{2} x + d^{4} e\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)/(e*x+d)^7,x, algorithm="fricas")

[Out]

-1/3*sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*c/(e^5*x^4 + 4*d*e^4*x^3 + 6*d^2*e^3*x^2 + 4*d^3*e^2*x + d^4*e)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c \left (d + e x\right )^{2}\right )^{\frac{3}{2}}}{\left (d + e x\right )^{7}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e**2*x**2+2*c*d*e*x+c*d**2)**(3/2)/(e*x+d)**7,x)

[Out]

Integral((c*(d + e*x)**2)**(3/2)/(d + e*x)**7, x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)/(e*x+d)^7,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError