### 3.1036 $$\int \frac{\sqrt{c d^2+2 c d e x+c e^2 x^2}}{(d+e x)^4} \, dx$$

Optimal. Leaf size=39 $-\frac{c}{2 e (d+e x) \sqrt{c d^2+2 c d e x+c e^2 x^2}}$

[Out]

-c/(2*e*(d + e*x)*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0193965, antiderivative size = 39, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 32, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.062, Rules used = {642, 607} $-\frac{c}{2 e (d+e x) \sqrt{c d^2+2 c d e x+c e^2 x^2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]/(d + e*x)^4,x]

[Out]

-c/(2*e*(d + e*x)*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2])

Rule 642

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^m/c^(m/2), Int[(a +
b*x + c*x^2)^(p + m/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && EqQ[
2*c*d - b*e, 0] && IntegerQ[m/2]

Rule 607

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(a + b*x + c*x^2)^(p + 1))/((2*p + 1)*(b + 2
*c*x)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rubi steps

\begin{align*} \int \frac{\sqrt{c d^2+2 c d e x+c e^2 x^2}}{(d+e x)^4} \, dx &=c^2 \int \frac{1}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx\\ &=-\frac{c}{2 e (d+e x) \sqrt{c d^2+2 c d e x+c e^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.005925, size = 27, normalized size = 0.69 $-\frac{\sqrt{c (d+e x)^2}}{2 e (d+e x)^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]/(d + e*x)^4,x]

[Out]

-Sqrt[c*(d + e*x)^2]/(2*e*(d + e*x)^3)

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 35, normalized size = 0.9 \begin{align*} -{\frac{1}{2\, \left ( ex+d \right ) ^{3}e}\sqrt{c{e}^{2}{x}^{2}+2\,cdex+c{d}^{2}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^4,x)

[Out]

-1/2/(e*x+d)^3/e*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^4,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [A]  time = 2.3728, size = 119, normalized size = 3.05 \begin{align*} -\frac{\sqrt{c e^{2} x^{2} + 2 \, c d e x + c d^{2}}}{2 \,{\left (e^{4} x^{3} + 3 \, d e^{3} x^{2} + 3 \, d^{2} e^{2} x + d^{3} e\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^4,x, algorithm="fricas")

[Out]

-1/2*sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)/(e^4*x^3 + 3*d*e^3*x^2 + 3*d^2*e^2*x + d^3*e)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c \left (d + e x\right )^{2}}}{\left (d + e x\right )^{4}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e**2*x**2+2*c*d*e*x+c*d**2)**(1/2)/(e*x+d)**4,x)

[Out]

Integral(sqrt(c*(d + e*x)**2)/(d + e*x)**4, x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^4,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError