### 3.1005 $$\int \frac{1}{(d+e x)^2 (c d^2+2 c d e x+c e^2 x^2)} \, dx$$

Optimal. Leaf size=17 $-\frac{1}{3 c e (d+e x)^3}$

[Out]

-1/(3*c*e*(d + e*x)^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0046357, antiderivative size = 17, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.1, Rules used = {27, 12, 32} $-\frac{1}{3 c e (d+e x)^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((d + e*x)^2*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)),x]

[Out]

-1/(3*c*e*(d + e*x)^3)

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )} \, dx &=\int \frac{1}{c (d+e x)^4} \, dx\\ &=\frac{\int \frac{1}{(d+e x)^4} \, dx}{c}\\ &=-\frac{1}{3 c e (d+e x)^3}\\ \end{align*}

Mathematica [A]  time = 0.002144, size = 17, normalized size = 1. $-\frac{1}{3 c e (d+e x)^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[1/((d + e*x)^2*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)),x]

[Out]

-1/(3*c*e*(d + e*x)^3)

________________________________________________________________________________________

Maple [A]  time = 0.043, size = 16, normalized size = 0.9 \begin{align*} -{\frac{1}{3\,ce \left ( ex+d \right ) ^{3}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2),x)

[Out]

-1/3/c/e/(e*x+d)^3

________________________________________________________________________________________

Maxima [B]  time = 1.27748, size = 53, normalized size = 3.12 \begin{align*} -\frac{1}{3 \,{\left (c e^{4} x^{3} + 3 \, c d e^{3} x^{2} + 3 \, c d^{2} e^{2} x + c d^{3} e\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2),x, algorithm="maxima")

[Out]

-1/3/(c*e^4*x^3 + 3*c*d*e^3*x^2 + 3*c*d^2*e^2*x + c*d^3*e)

________________________________________________________________________________________

Fricas [B]  time = 2.01887, size = 81, normalized size = 4.76 \begin{align*} -\frac{1}{3 \,{\left (c e^{4} x^{3} + 3 \, c d e^{3} x^{2} + 3 \, c d^{2} e^{2} x + c d^{3} e\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2),x, algorithm="fricas")

[Out]

-1/3/(c*e^4*x^3 + 3*c*d*e^3*x^2 + 3*c*d^2*e^2*x + c*d^3*e)

________________________________________________________________________________________

Sympy [B]  time = 0.486444, size = 44, normalized size = 2.59 \begin{align*} - \frac{1}{3 c d^{3} e + 9 c d^{2} e^{2} x + 9 c d e^{3} x^{2} + 3 c e^{4} x^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**2/(c*e**2*x**2+2*c*d*e*x+c*d**2),x)

[Out]

-1/(3*c*d**3*e + 9*c*d**2*e**2*x + 9*c*d*e**3*x**2 + 3*c*e**4*x**3)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError