### 3.1000 $$\int \frac{(d+e x)^3}{c d^2+2 c d e x+c e^2 x^2} \, dx$$

Optimal. Leaf size=17 $\frac{(d+e x)^2}{2 c e}$

[Out]

(d + e*x)^2/(2*c*e)

________________________________________________________________________________________

Rubi [A]  time = 0.0034212, antiderivative size = 17, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 30, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.067, Rules used = {27, 9} $\frac{(d+e x)^2}{2 c e}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x)^3/(c*d^2 + 2*c*d*e*x + c*e^2*x^2),x]

[Out]

(d + e*x)^2/(2*c*e)

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 9

Int[(a_)*((b_) + (c_.)*(x_)), x_Symbol] :> Simp[(a*(b + c*x)^2)/(2*c), x] /; FreeQ[{a, b, c}, x]

Rubi steps

\begin{align*} \int \frac{(d+e x)^3}{c d^2+2 c d e x+c e^2 x^2} \, dx &=\int \frac{d+e x}{c} \, dx\\ &=\frac{(d+e x)^2}{2 c e}\\ \end{align*}

Mathematica [A]  time = 0.0005302, size = 16, normalized size = 0.94 $\frac{d x+\frac{e x^2}{2}}{c}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x)^3/(c*d^2 + 2*c*d*e*x + c*e^2*x^2),x]

[Out]

(d*x + (e*x^2)/2)/c

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 15, normalized size = 0.9 \begin{align*}{\frac{1}{c} \left ({\frac{e{x}^{2}}{2}}+dx \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2),x)

[Out]

1/c*(1/2*e*x^2+d*x)

________________________________________________________________________________________

Maxima [A]  time = 1.20135, size = 20, normalized size = 1.18 \begin{align*} \frac{e x^{2} + 2 \, d x}{2 \, c} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2),x, algorithm="maxima")

[Out]

1/2*(e*x^2 + 2*d*x)/c

________________________________________________________________________________________

Fricas [A]  time = 1.93851, size = 31, normalized size = 1.82 \begin{align*} \frac{e x^{2} + 2 \, d x}{2 \, c} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2),x, algorithm="fricas")

[Out]

1/2*(e*x^2 + 2*d*x)/c

________________________________________________________________________________________

Sympy [A]  time = 0.16671, size = 12, normalized size = 0.71 \begin{align*} \frac{d x}{c} + \frac{e x^{2}}{2 c} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3/(c*e**2*x**2+2*c*d*e*x+c*d**2),x)

[Out]

d*x/c + e*x**2/(2*c)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError